基于随机森林和多重特征的岩性分类与分析——以曲龙铜矿床为例

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2023-10-18 DOI:10.1117/1.jrs.17.044504
Liangyu Chen, Wei Li
{"title":"基于随机森林和多重特征的岩性分类与分析——以曲龙铜矿床为例","authors":"Liangyu Chen, Wei Li","doi":"10.1117/1.jrs.17.044504","DOIUrl":null,"url":null,"abstract":"Surface cover diversity and the complexity of geological structures can seriously impact the accuracy of mineral mapping. To address this issue, we propose a method for lithological classification and analysis based on random forest (RF) and multiple features. Feature vectors, including spectral, polarization, texture, and terrain features, are constructed to provide multidimensional information. Subsequently, these feature vectors are screened based on their discriminative properties for different lithologies to reduce feature redundancy. Finally, the results of lithological classification can be obtained using the RF algorithm based on the selected features. In the experiments conducted in the Qulong copper deposit area, data from Sentinel-1A, Sentinel-2A, and Terra satellites were used to extract multidimensional features. After calculating the Bhattacharyya distance and analyzing the probability density distribution, 17 features selected were input into the RF classifier, achieving an accuracy of 88.83% in lithological classification. This represents a 7.5% improvement compared to exclusively relying on spectral features, and suggests that the proposed method of combining spectral, polarization, texture, and terrain features provides new possibilities for improving the accuracy of field lithological classification.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"44 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithological classification and analysis based on random forest and multiple features: a case study in the Qulong copper deposit, China\",\"authors\":\"Liangyu Chen, Wei Li\",\"doi\":\"10.1117/1.jrs.17.044504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface cover diversity and the complexity of geological structures can seriously impact the accuracy of mineral mapping. To address this issue, we propose a method for lithological classification and analysis based on random forest (RF) and multiple features. Feature vectors, including spectral, polarization, texture, and terrain features, are constructed to provide multidimensional information. Subsequently, these feature vectors are screened based on their discriminative properties for different lithologies to reduce feature redundancy. Finally, the results of lithological classification can be obtained using the RF algorithm based on the selected features. In the experiments conducted in the Qulong copper deposit area, data from Sentinel-1A, Sentinel-2A, and Terra satellites were used to extract multidimensional features. After calculating the Bhattacharyya distance and analyzing the probability density distribution, 17 features selected were input into the RF classifier, achieving an accuracy of 88.83% in lithological classification. This represents a 7.5% improvement compared to exclusively relying on spectral features, and suggests that the proposed method of combining spectral, polarization, texture, and terrain features provides new possibilities for improving the accuracy of field lithological classification.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.17.044504\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jrs.17.044504","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地表覆盖的多样性和地质构造的复杂性会严重影响矿产填图的精度。针对这一问题,提出了一种基于随机森林和多特征的岩性分类分析方法。构造特征向量,包括光谱、极化、纹理和地形特征,以提供多维信息。然后,根据这些特征向量对不同岩性进行判别性筛选,以减少特征冗余。最后,根据所选特征,利用射频算法进行岩性分类。利用Sentinel-1A、Sentinel-2A和Terra卫星数据,在曲龙铜矿区进行了多维特征提取。计算Bhattacharyya距离并分析概率密度分布后,将选取的17个特征输入到RF分类器中,岩性分类准确率达到88.83%。与单纯依赖光谱特征相比,提高了7.5%,表明该方法结合了光谱、极化、纹理和地形特征,为提高野外岩性分类精度提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lithological classification and analysis based on random forest and multiple features: a case study in the Qulong copper deposit, China
Surface cover diversity and the complexity of geological structures can seriously impact the accuracy of mineral mapping. To address this issue, we propose a method for lithological classification and analysis based on random forest (RF) and multiple features. Feature vectors, including spectral, polarization, texture, and terrain features, are constructed to provide multidimensional information. Subsequently, these feature vectors are screened based on their discriminative properties for different lithologies to reduce feature redundancy. Finally, the results of lithological classification can be obtained using the RF algorithm based on the selected features. In the experiments conducted in the Qulong copper deposit area, data from Sentinel-1A, Sentinel-2A, and Terra satellites were used to extract multidimensional features. After calculating the Bhattacharyya distance and analyzing the probability density distribution, 17 features selected were input into the RF classifier, achieving an accuracy of 88.83% in lithological classification. This represents a 7.5% improvement compared to exclusively relying on spectral features, and suggests that the proposed method of combining spectral, polarization, texture, and terrain features provides new possibilities for improving the accuracy of field lithological classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions Cascaded CNN and global–local attention transformer network-based semantic segmentation for high-resolution remote sensing image Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1