无约束理想向列弹性体的可控变形

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Elasticity Pub Date : 2023-10-18 DOI:10.1007/s10659-023-10038-5
L. Angela Mihai, Alain Goriely
{"title":"无约束理想向列弹性体的可控变形","authors":"L. Angela Mihai, Alain Goriely","doi":"10.1007/s10659-023-10038-5","DOIUrl":null,"url":null,"abstract":"Abstract We establish that, for ideal unconstrained uniaxial nematic elastomers described by a homogeneous isotropic strain-energy density function, the only smooth deformations that can be controlled by the application of surface tractions only and are universal in the sense that they are independent of the strain-energy density are those for which the deformation gradient is constant and the liquid crystal director is either aligned uniformly or oriented randomly in Cartesian coordinates. This result generalizes the classical Ericksen’s theorem for nonlinear homogeneous isotropic hyperelastic materials. While Ericksen’s theorem is directly applicable to liquid crystal elastomers in an isotropic phase where the director is oriented randomly, in a nematic phase, the constitutive strain-energy density must account also for the liquid crystal orientation which leads to significant differences in the analysis compared to the purely elastic counterpart.","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable Deformations of Unconstrained Ideal Nematic Elastomers\",\"authors\":\"L. Angela Mihai, Alain Goriely\",\"doi\":\"10.1007/s10659-023-10038-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish that, for ideal unconstrained uniaxial nematic elastomers described by a homogeneous isotropic strain-energy density function, the only smooth deformations that can be controlled by the application of surface tractions only and are universal in the sense that they are independent of the strain-energy density are those for which the deformation gradient is constant and the liquid crystal director is either aligned uniformly or oriented randomly in Cartesian coordinates. This result generalizes the classical Ericksen’s theorem for nonlinear homogeneous isotropic hyperelastic materials. While Ericksen’s theorem is directly applicable to liquid crystal elastomers in an isotropic phase where the director is oriented randomly, in a nematic phase, the constitutive strain-energy density must account also for the liquid crystal orientation which leads to significant differences in the analysis compared to the purely elastic counterpart.\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10659-023-10038-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10659-023-10038-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文建立了由均匀各向同性应变能密度函数描述的理想无约束单轴向列弹性体,只有变形梯度恒定且液晶指向在笛卡尔坐标系中均匀或随机取向的光滑变形才能仅由表面牵引力控制,并且与应变能密度无关,具有普适性。这一结果推广了非线性均匀各向同性超弹性材料的经典Ericksen定理。虽然Ericksen定理直接适用于液晶弹性体的各向同性相,其中指向性是随机取向的,但在向列相中,本构应变能密度也必须考虑液晶取向,这导致分析与纯弹性相比较有显着差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controllable Deformations of Unconstrained Ideal Nematic Elastomers
Abstract We establish that, for ideal unconstrained uniaxial nematic elastomers described by a homogeneous isotropic strain-energy density function, the only smooth deformations that can be controlled by the application of surface tractions only and are universal in the sense that they are independent of the strain-energy density are those for which the deformation gradient is constant and the liquid crystal director is either aligned uniformly or oriented randomly in Cartesian coordinates. This result generalizes the classical Ericksen’s theorem for nonlinear homogeneous isotropic hyperelastic materials. While Ericksen’s theorem is directly applicable to liquid crystal elastomers in an isotropic phase where the director is oriented randomly, in a nematic phase, the constitutive strain-energy density must account also for the liquid crystal orientation which leads to significant differences in the analysis compared to the purely elastic counterpart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
期刊最新文献
Initial Stresses in a Twisted Porous Fluid-Saturated Cylinder New Perspectives on Torsional Rigidity and Polynomial Approximations of z-bar A Morphoelastic Shell Theory of Biological Invagination in Embryos A Direct Approach to the Polar Representation of Plane Tensors The Micro-Bond Potential and Stress Tensor in Peridynamics Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1