{"title":"加权Toeplitz正则最小二乘问题的一种新的块预条件","authors":"Fariba Bakrani Balani, Masoud Hajarian","doi":"10.1080/00207160.2023.2272589","DOIUrl":null,"url":null,"abstract":"AbstractWe introduce a new block preconditioner for the solution of weighted Toeplitz regularized least-squares problems written in augmented system form. The proposed preconditioner is obtained based on the new splitting of coefficient matrix which results in an unconditionally convergent stationary iterative method. Spectral analysis of the preconditioned matrix is investigated. In particular, we show that the preconditioned matrix has a very nice eigenvalue distribution which can lead to fast convergence of the preconditioned Krylov subspace methods such as GMRES. Numerical experiments are reported to demonstrate the performance of preconditioner used with (flexible) GMRES method in the solution of augmented system form of weighted Toeplitz regularized least-squares problems.Keywords: PreconditioningSplittingLeast-squares problemsWeighted Toeplitz matricesAMS classification 2010:: 65F1065F50DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":"75 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new block preconditioner for weighted Toeplitz regularized least-squares problems\",\"authors\":\"Fariba Bakrani Balani, Masoud Hajarian\",\"doi\":\"10.1080/00207160.2023.2272589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractWe introduce a new block preconditioner for the solution of weighted Toeplitz regularized least-squares problems written in augmented system form. The proposed preconditioner is obtained based on the new splitting of coefficient matrix which results in an unconditionally convergent stationary iterative method. Spectral analysis of the preconditioned matrix is investigated. In particular, we show that the preconditioned matrix has a very nice eigenvalue distribution which can lead to fast convergence of the preconditioned Krylov subspace methods such as GMRES. Numerical experiments are reported to demonstrate the performance of preconditioner used with (flexible) GMRES method in the solution of augmented system form of weighted Toeplitz regularized least-squares problems.Keywords: PreconditioningSplittingLeast-squares problemsWeighted Toeplitz matricesAMS classification 2010:: 65F1065F50DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript.\",\"PeriodicalId\":13911,\"journal\":{\"name\":\"International Journal of Computer Mathematics\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00207160.2023.2272589\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2272589","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A new block preconditioner for weighted Toeplitz regularized least-squares problems
AbstractWe introduce a new block preconditioner for the solution of weighted Toeplitz regularized least-squares problems written in augmented system form. The proposed preconditioner is obtained based on the new splitting of coefficient matrix which results in an unconditionally convergent stationary iterative method. Spectral analysis of the preconditioned matrix is investigated. In particular, we show that the preconditioned matrix has a very nice eigenvalue distribution which can lead to fast convergence of the preconditioned Krylov subspace methods such as GMRES. Numerical experiments are reported to demonstrate the performance of preconditioner used with (flexible) GMRES method in the solution of augmented system form of weighted Toeplitz regularized least-squares problems.Keywords: PreconditioningSplittingLeast-squares problemsWeighted Toeplitz matricesAMS classification 2010:: 65F1065F50DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript.
期刊介绍:
International Journal of Computer Mathematics (IJCM) is a world-leading journal serving the community of researchers in numerical analysis and scientific computing from academia to industry. IJCM publishes original research papers of high scientific value in fields of computational mathematics with profound applications to science and engineering.
IJCM welcomes papers on the analysis and applications of innovative computational strategies as well as those with rigorous explorations of cutting-edge techniques and concerns in computational mathematics. Topics IJCM considers include:
• Numerical solutions of systems of partial differential equations
• Numerical solution of systems or of multi-dimensional partial differential equations
• Theory and computations of nonlocal modelling and fractional partial differential equations
• Novel multi-scale modelling and computational strategies
• Parallel computations
• Numerical optimization and controls
• Imaging algorithms and vision configurations
• Computational stochastic processes and inverse problems
• Stochastic partial differential equations, Monte Carlo simulations and uncertainty quantification
• Computational finance and applications
• Highly vibrant and robust algorithms, and applications in modern industries, including but not limited to multi-physics, economics and biomedicine.
Papers discussing only variations or combinations of existing methods without significant new computational properties or analysis are not of interest to IJCM.
Please note that research in the development of computer systems and theory of computing are not suitable for submission to IJCM. Please instead consider International Journal of Computer Mathematics: Computer Systems Theory (IJCM: CST) for your manuscript. Please note that any papers submitted relating to these fields will be transferred to IJCM:CST. Please ensure you submit your paper to the correct journal to save time reviewing and processing your work.
Papers developed from Conference Proceedings
Please note that papers developed from conference proceedings or previously published work must contain at least 40% new material and significantly extend or improve upon earlier research in order to be considered for IJCM.