{"title":"人肺泡蛋白沉积症多层结构的超微结构、组织化学和冷冻骨折评估。","authors":"T Takemura, Y Fukuda, M Harrison, V J Ferrans","doi":"10.1002/aja.1001790307","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrastructural, histochemical, and freeze-fracture studies of material recovered by bronchoalveolar lavage from patients with pulmonary alveolar proteinosis revealed four types (A, B, C, and D) of multilamellated structures (MS). Type A, the major component, consisted of concentric, trilaminar structures which were composed of two electron-dense layers and a central lucent layer (5.7-7.5 nm in overall width) alternating with wider (25-30 nm) electron-lucent intervening layers. Type B MS were formed by concentric lamellae with a 5-5.3-nm periodicity. Type C MS were composed of wavy, electron-dense lamellae with a 4-4.5-nm periodicity. Type D MS were conglomerated masses of intricately arranged double or triple electron-dense layers (7.5-13.5 nm wide) alternating with wider (30-40-nm) electron-lucent layers. The electron-dense lamellae of type A, type C, and type D MS were stained with ruthenium red, the Thiéry method, and concanavalin A, indicating the presence of carbohydrate components. Freeze-fracture studies revealed smooth inner and outer surfaces in type A MS, with the fracture planes passing through the central parts of the trilaminar structures; the intervening layers contained 10-nm particles, which probably are proteins. Type B MS had smooth surfaces, and type C MS had slightly particulate surfaces; while type D MS showed tubular or polygonal structures, 350 nm wide, with rows of particles 7-8 nm in diameter. It is concluded that type A and type D MS contain proteins and carbohydrates, probably in the form of glycoproteins, as well as phospholipids, and are related to tubular myelin. Type B and type C MS are considered to contain mainly phospholipids; type C MS are also considered to contain carbohydrates and to be related to lamellar bodies of type II alveolar epithelial cells.</p>","PeriodicalId":50815,"journal":{"name":"American Journal of Anatomy","volume":"179 3","pages":"258-68"},"PeriodicalIF":0.0000,"publicationDate":"1987-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aja.1001790307","citationCount":"24","resultStr":"{\"title\":\"Ultrastructural, histochemical, and freeze-fracture evaluation of multilamellated structures in human pulmonary alveolar proteinosis.\",\"authors\":\"T Takemura, Y Fukuda, M Harrison, V J Ferrans\",\"doi\":\"10.1002/aja.1001790307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrastructural, histochemical, and freeze-fracture studies of material recovered by bronchoalveolar lavage from patients with pulmonary alveolar proteinosis revealed four types (A, B, C, and D) of multilamellated structures (MS). Type A, the major component, consisted of concentric, trilaminar structures which were composed of two electron-dense layers and a central lucent layer (5.7-7.5 nm in overall width) alternating with wider (25-30 nm) electron-lucent intervening layers. Type B MS were formed by concentric lamellae with a 5-5.3-nm periodicity. Type C MS were composed of wavy, electron-dense lamellae with a 4-4.5-nm periodicity. Type D MS were conglomerated masses of intricately arranged double or triple electron-dense layers (7.5-13.5 nm wide) alternating with wider (30-40-nm) electron-lucent layers. The electron-dense lamellae of type A, type C, and type D MS were stained with ruthenium red, the Thiéry method, and concanavalin A, indicating the presence of carbohydrate components. Freeze-fracture studies revealed smooth inner and outer surfaces in type A MS, with the fracture planes passing through the central parts of the trilaminar structures; the intervening layers contained 10-nm particles, which probably are proteins. Type B MS had smooth surfaces, and type C MS had slightly particulate surfaces; while type D MS showed tubular or polygonal structures, 350 nm wide, with rows of particles 7-8 nm in diameter. It is concluded that type A and type D MS contain proteins and carbohydrates, probably in the form of glycoproteins, as well as phospholipids, and are related to tubular myelin. Type B and type C MS are considered to contain mainly phospholipids; type C MS are also considered to contain carbohydrates and to be related to lamellar bodies of type II alveolar epithelial cells.</p>\",\"PeriodicalId\":50815,\"journal\":{\"name\":\"American Journal of Anatomy\",\"volume\":\"179 3\",\"pages\":\"258-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/aja.1001790307\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Anatomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aja.1001790307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Anatomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aja.1001790307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrastructural, histochemical, and freeze-fracture evaluation of multilamellated structures in human pulmonary alveolar proteinosis.
Ultrastructural, histochemical, and freeze-fracture studies of material recovered by bronchoalveolar lavage from patients with pulmonary alveolar proteinosis revealed four types (A, B, C, and D) of multilamellated structures (MS). Type A, the major component, consisted of concentric, trilaminar structures which were composed of two electron-dense layers and a central lucent layer (5.7-7.5 nm in overall width) alternating with wider (25-30 nm) electron-lucent intervening layers. Type B MS were formed by concentric lamellae with a 5-5.3-nm periodicity. Type C MS were composed of wavy, electron-dense lamellae with a 4-4.5-nm periodicity. Type D MS were conglomerated masses of intricately arranged double or triple electron-dense layers (7.5-13.5 nm wide) alternating with wider (30-40-nm) electron-lucent layers. The electron-dense lamellae of type A, type C, and type D MS were stained with ruthenium red, the Thiéry method, and concanavalin A, indicating the presence of carbohydrate components. Freeze-fracture studies revealed smooth inner and outer surfaces in type A MS, with the fracture planes passing through the central parts of the trilaminar structures; the intervening layers contained 10-nm particles, which probably are proteins. Type B MS had smooth surfaces, and type C MS had slightly particulate surfaces; while type D MS showed tubular or polygonal structures, 350 nm wide, with rows of particles 7-8 nm in diameter. It is concluded that type A and type D MS contain proteins and carbohydrates, probably in the form of glycoproteins, as well as phospholipids, and are related to tubular myelin. Type B and type C MS are considered to contain mainly phospholipids; type C MS are also considered to contain carbohydrates and to be related to lamellar bodies of type II alveolar epithelial cells.