{"title":"地热能吸收式制冷系统的性能分析:以苹果果冷库为例","authors":"Bilsay Pastakkaya","doi":"10.1093/ijlct/ctad061","DOIUrl":null,"url":null,"abstract":"Abstract Renewable energy use in agricultural applications is essential for sustainable production. Resorption cooling systems can be operated for agricultural cooling applications by using thermal energy derived from geothermal springs with sufficient temperature. Since the resorption cycle uses ammonia-water solution, cold storage and industrial cooling processes below 0°C can be actualized efficiently. In this article, a geothermal powered resorption system for cold storage of apple fruit is investigated. Technical features and cooling performance of the resorption system are analysed and compared to the other conventional cooling systems. Results showed that, geothermal powered resorption cooling systems can annually cover the cooling load of the cold storage application with adequate cooling temperature and capacity. Moreover, the use of the geothermal powered resorption system enables to set up safer and more economic cooling applications with the similar cooling performance compared with the alternative sorption cooling systems, and provides substantial economic benefits by reducing the cooling costs in agricultural production with lower operational costs.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":"179 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of a geothermal heat-powered resorption cooling system: a case study for cold storage of apple fruit\",\"authors\":\"Bilsay Pastakkaya\",\"doi\":\"10.1093/ijlct/ctad061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Renewable energy use in agricultural applications is essential for sustainable production. Resorption cooling systems can be operated for agricultural cooling applications by using thermal energy derived from geothermal springs with sufficient temperature. Since the resorption cycle uses ammonia-water solution, cold storage and industrial cooling processes below 0°C can be actualized efficiently. In this article, a geothermal powered resorption system for cold storage of apple fruit is investigated. Technical features and cooling performance of the resorption system are analysed and compared to the other conventional cooling systems. Results showed that, geothermal powered resorption cooling systems can annually cover the cooling load of the cold storage application with adequate cooling temperature and capacity. Moreover, the use of the geothermal powered resorption system enables to set up safer and more economic cooling applications with the similar cooling performance compared with the alternative sorption cooling systems, and provides substantial economic benefits by reducing the cooling costs in agricultural production with lower operational costs.\",\"PeriodicalId\":14118,\"journal\":{\"name\":\"International Journal of Low-carbon Technologies\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Low-carbon Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ijlct/ctad061\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ijlct/ctad061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance analysis of a geothermal heat-powered resorption cooling system: a case study for cold storage of apple fruit
Abstract Renewable energy use in agricultural applications is essential for sustainable production. Resorption cooling systems can be operated for agricultural cooling applications by using thermal energy derived from geothermal springs with sufficient temperature. Since the resorption cycle uses ammonia-water solution, cold storage and industrial cooling processes below 0°C can be actualized efficiently. In this article, a geothermal powered resorption system for cold storage of apple fruit is investigated. Technical features and cooling performance of the resorption system are analysed and compared to the other conventional cooling systems. Results showed that, geothermal powered resorption cooling systems can annually cover the cooling load of the cold storage application with adequate cooling temperature and capacity. Moreover, the use of the geothermal powered resorption system enables to set up safer and more economic cooling applications with the similar cooling performance compared with the alternative sorption cooling systems, and provides substantial economic benefits by reducing the cooling costs in agricultural production with lower operational costs.
期刊介绍:
The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.