后续集群、卫星受众和桥梁节点:2020年美国大选的协同参与网络

Andrew Beers, Joseph S. Schafer, Ian Kennedy, Morgan Wack, Emma S. Spiro, Kate Starbird
{"title":"后续集群、卫星受众和桥梁节点:2020年美国大选的协同参与网络","authors":"Andrew Beers, Joseph S. Schafer, Ian Kennedy, Morgan Wack, Emma S. Spiro, Kate Starbird","doi":"10.1609/icwsm.v17i1.22126","DOIUrl":null,"url":null,"abstract":"The 2020 United States (US) presidential election was — and has continued to be — the focus of pervasive and persistent mis- and disinformation spreading through our media ecosystems, including social media. This event has driven the collection and analysis of large, directed social network datasets, but such datasets can resist intuitive understanding. In such large datasets, the overwhelming number of nodes and edges present in typical representations create visual artifacts, such as densely overlapping edges and tightly-packed formations of low-degree nodes, which obscure many features of more practical interest. We apply a method, coengagement transformations, to convert such networks of social data into tractable images. Intuitively, this approach allows for parameterized network visualizations that make shared audiences of engaged viewers salient to viewers. Using the interpretative capabilities of this method, we perform an extensive case study of the 2020 United States presidential election on Twitter, contributing an empirical analysis of coengagement. By creating and contrasting different networks at different parameter sets, we define and characterize several structures in this discourse network, including bridging accounts, satellite audiences, and followback communities. We discuss the importance and implications of these empirical network features in this context. In addition, we release open-source code for creating coengagement networks from Twitter and other structured interaction data.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Followback Clusters, Satellite Audiences, and Bridge Nodes: Coengagement Networks for the 2020 US Election\",\"authors\":\"Andrew Beers, Joseph S. Schafer, Ian Kennedy, Morgan Wack, Emma S. Spiro, Kate Starbird\",\"doi\":\"10.1609/icwsm.v17i1.22126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2020 United States (US) presidential election was — and has continued to be — the focus of pervasive and persistent mis- and disinformation spreading through our media ecosystems, including social media. This event has driven the collection and analysis of large, directed social network datasets, but such datasets can resist intuitive understanding. In such large datasets, the overwhelming number of nodes and edges present in typical representations create visual artifacts, such as densely overlapping edges and tightly-packed formations of low-degree nodes, which obscure many features of more practical interest. We apply a method, coengagement transformations, to convert such networks of social data into tractable images. Intuitively, this approach allows for parameterized network visualizations that make shared audiences of engaged viewers salient to viewers. Using the interpretative capabilities of this method, we perform an extensive case study of the 2020 United States presidential election on Twitter, contributing an empirical analysis of coengagement. By creating and contrasting different networks at different parameter sets, we define and characterize several structures in this discourse network, including bridging accounts, satellite audiences, and followback communities. We discuss the importance and implications of these empirical network features in this context. In addition, we release open-source code for creating coengagement networks from Twitter and other structured interaction data.\",\"PeriodicalId\":338112,\"journal\":{\"name\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v17i1.22126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

2020年美国总统大选是——并将继续是——通过包括社交媒体在内的我们的媒体生态系统传播的普遍和持续的错误和虚假信息的焦点。这一事件推动了大型定向社交网络数据集的收集和分析,但这些数据集无法直观理解。在这样的大型数据集中,典型表示中出现的压倒性数量的节点和边缘会产生视觉伪影,例如密集重叠的边缘和紧密排列的低度节点,这掩盖了许多更实际的特征。我们采用一种方法,即协同转换,将这种社交数据网络转换为可处理的图像。直观地说,这种方法允许参数化的网络可视化,使参与的观众的共享观众对观众突出。利用该方法的解释能力,我们对Twitter上的2020年美国总统大选进行了广泛的案例研究,并对共同参与进行了实证分析。通过在不同参数集下创建和对比不同的网络,我们定义并描述了该话语网络中的几种结构,包括桥接帐户、卫星受众和后续社区。我们在此背景下讨论这些经验网络特征的重要性和含义。此外,我们还发布了从Twitter和其他结构化交互数据创建协同参与网络的开源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Followback Clusters, Satellite Audiences, and Bridge Nodes: Coengagement Networks for the 2020 US Election
The 2020 United States (US) presidential election was — and has continued to be — the focus of pervasive and persistent mis- and disinformation spreading through our media ecosystems, including social media. This event has driven the collection and analysis of large, directed social network datasets, but such datasets can resist intuitive understanding. In such large datasets, the overwhelming number of nodes and edges present in typical representations create visual artifacts, such as densely overlapping edges and tightly-packed formations of low-degree nodes, which obscure many features of more practical interest. We apply a method, coengagement transformations, to convert such networks of social data into tractable images. Intuitively, this approach allows for parameterized network visualizations that make shared audiences of engaged viewers salient to viewers. Using the interpretative capabilities of this method, we perform an extensive case study of the 2020 United States presidential election on Twitter, contributing an empirical analysis of coengagement. By creating and contrasting different networks at different parameter sets, we define and characterize several structures in this discourse network, including bridging accounts, satellite audiences, and followback communities. We discuss the importance and implications of these empirical network features in this context. In addition, we release open-source code for creating coengagement networks from Twitter and other structured interaction data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statement of Removal AnnoBERT: Effectively Representing Multiple Annotators’ Label Choices to Improve Hate Speech Detection Just Another Day on Twitter: A Complete 24 Hours of Twitter Data #RoeOverturned: Twitter Dataset on the Abortion Rights Controversy SexWEs: Domain-Aware Word Embeddings via Cross-Lingual Semantic Specialisation for Chinese Sexism Detection in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1