{"title":"三维接触亚黎曼流形中g属≥1的曲面","authors":"Eugenio Bellini, Ugo Boscain","doi":"10.1051/cocv/2023072","DOIUrl":null,"url":null,"abstract":"We consider smooth embedded surfaces in a 3D contact sub-Riemannian manifold and the problem of the finiteness of the induced distance ( i.e. , the infimum of the length of horizontal curves that belong to the surface). Recently it has been proved that for a surface having the topology of a sphere embedded in a tight co-orientable structure, the distance is always finite. In this paper we study closed surfaces of genus larger than 1, proving that such surfaces can be embedded in such a way that the induced distance is finite or infinite. We then study the structural stability of the fmiteness/not-finiteness of the distance.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"7 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfaces of genus g≥ 1 in 3D contact sub-Riemannian manifolds\",\"authors\":\"Eugenio Bellini, Ugo Boscain\",\"doi\":\"10.1051/cocv/2023072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider smooth embedded surfaces in a 3D contact sub-Riemannian manifold and the problem of the finiteness of the induced distance ( i.e. , the infimum of the length of horizontal curves that belong to the surface). Recently it has been proved that for a surface having the topology of a sphere embedded in a tight co-orientable structure, the distance is always finite. In this paper we study closed surfaces of genus larger than 1, proving that such surfaces can be embedded in such a way that the induced distance is finite or infinite. We then study the structural stability of the fmiteness/not-finiteness of the distance.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2023072\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/cocv/2023072","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Surfaces of genus g≥ 1 in 3D contact sub-Riemannian manifolds
We consider smooth embedded surfaces in a 3D contact sub-Riemannian manifold and the problem of the finiteness of the induced distance ( i.e. , the infimum of the length of horizontal curves that belong to the surface). Recently it has been proved that for a surface having the topology of a sphere embedded in a tight co-orientable structure, the distance is always finite. In this paper we study closed surfaces of genus larger than 1, proving that such surfaces can be embedded in such a way that the induced distance is finite or infinite. We then study the structural stability of the fmiteness/not-finiteness of the distance.
期刊介绍:
ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations.
Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines.
Targeted topics include:
in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory;
in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis;
in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.