发现q:分析QAnon在Parler上的支持者

Dominik Bär, Nicolas Pröllochs, Stefan Feuerriegel
{"title":"发现q:分析QAnon在Parler上的支持者","authors":"Dominik Bär, Nicolas Pröllochs, Stefan Feuerriegel","doi":"10.1609/icwsm.v17i1.22124","DOIUrl":null,"url":null,"abstract":"The social media platform \"Parler'' has emerged into a prominent fringe community where a significant part of the user base are self-reported supporters of QAnon, a far-right conspiracy theory alleging that a cabal of elites controls global politics. QAnon is considered to have had an influential role in the public discourse during the 2020 U.S. presidential election. However, little is known about QAnon supporters on Parler and what sets them aside from other users. Building up on social identity theory, we aim to profile the characteristics of QAnon supporters on Parler. We analyze a large-scale dataset with more than 600,000 profiles of English-speaking users on Parler. Based on users' profiles, posts, and comments, we then extract a comprehensive set of user features, linguistic features, network features, and content features. This allows us to perform user profiling and understand to what extent these features discriminate between QAnon and non-QAnon supporters on Parler. Our analysis is three-fold: (1) We quantify the number of QAnon supporters on Parler, finding that 34,913 users (5.5% of all users) openly report supporting the conspiracy. (2) We examine differences between QAnon vs. non-QAnon supporters. We find that QAnon supporters differ statistically significantly from non-QAnon supporters across multiple dimensions. For example, they have, on average, a larger number of followers, followees, and posts, and thus have a large impact on the Parler network. (3) We use machine learning to identify which user characteristics discriminate QAnon from non-QAnon supporters. We find that user features, linguistic features, network features, and content features, can - to a large extent - discriminate QAnon vs. non-QAnon supporters on Parler. In particular, we find that user features are highly discriminatory, followed by content features and linguistic features.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finding Qs: Profiling QAnon Supporters on Parler\",\"authors\":\"Dominik Bär, Nicolas Pröllochs, Stefan Feuerriegel\",\"doi\":\"10.1609/icwsm.v17i1.22124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The social media platform \\\"Parler'' has emerged into a prominent fringe community where a significant part of the user base are self-reported supporters of QAnon, a far-right conspiracy theory alleging that a cabal of elites controls global politics. QAnon is considered to have had an influential role in the public discourse during the 2020 U.S. presidential election. However, little is known about QAnon supporters on Parler and what sets them aside from other users. Building up on social identity theory, we aim to profile the characteristics of QAnon supporters on Parler. We analyze a large-scale dataset with more than 600,000 profiles of English-speaking users on Parler. Based on users' profiles, posts, and comments, we then extract a comprehensive set of user features, linguistic features, network features, and content features. This allows us to perform user profiling and understand to what extent these features discriminate between QAnon and non-QAnon supporters on Parler. Our analysis is three-fold: (1) We quantify the number of QAnon supporters on Parler, finding that 34,913 users (5.5% of all users) openly report supporting the conspiracy. (2) We examine differences between QAnon vs. non-QAnon supporters. We find that QAnon supporters differ statistically significantly from non-QAnon supporters across multiple dimensions. For example, they have, on average, a larger number of followers, followees, and posts, and thus have a large impact on the Parler network. (3) We use machine learning to identify which user characteristics discriminate QAnon from non-QAnon supporters. We find that user features, linguistic features, network features, and content features, can - to a large extent - discriminate QAnon vs. non-QAnon supporters on Parler. In particular, we find that user features are highly discriminatory, followed by content features and linguistic features.\",\"PeriodicalId\":338112,\"journal\":{\"name\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v17i1.22124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社交媒体平台“Parler”已经成为一个突出的边缘社区,其中很大一部分用户自称是QAnon的支持者,QAnon是一个极右翼阴谋论,声称精英集团控制着全球政治。QAnon被认为在2020年美国总统选举期间的公共话语中发挥了重要作用。然而,人们对Parler上的QAnon支持者知之甚少,也不知道他们与其他用户的区别。在社会认同理论的基础上,我们试图对帕勒尔的QAnon支持者的特征进行分析。我们分析了Parler上超过60万英语用户的大型数据集。然后,根据用户的个人资料、帖子和评论,我们提取了一套全面的用户特征、语言特征、网络特征和内容特征。这使我们能够执行用户分析,并了解这些功能在多大程度上区分了Parler上QAnon和非QAnon支持者。我们的分析有三个方面:(1)我们量化了Parler上QAnon支持者的数量,发现34,913名用户(占所有用户的5.5%)公开报告支持阴谋。(2)我们研究了QAnon与非QAnon支持者之间的差异。我们发现QAnon的支持者与非QAnon的支持者在多个维度上有统计学上的显著差异。例如,他们平均有更多的追随者、跟随者和帖子,因此对Parler网络有很大的影响。(3)我们使用机器学习来识别哪些用户特征将QAnon与非QAnon支持者区分开来。我们发现,在很大程度上,用户特征、语言特征、网络特征和内容特征可以在Parler上区分QAnon和非QAnon支持者。特别是,我们发现用户特征具有高度歧视性,其次是内容特征和语言特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Qs: Profiling QAnon Supporters on Parler
The social media platform "Parler'' has emerged into a prominent fringe community where a significant part of the user base are self-reported supporters of QAnon, a far-right conspiracy theory alleging that a cabal of elites controls global politics. QAnon is considered to have had an influential role in the public discourse during the 2020 U.S. presidential election. However, little is known about QAnon supporters on Parler and what sets them aside from other users. Building up on social identity theory, we aim to profile the characteristics of QAnon supporters on Parler. We analyze a large-scale dataset with more than 600,000 profiles of English-speaking users on Parler. Based on users' profiles, posts, and comments, we then extract a comprehensive set of user features, linguistic features, network features, and content features. This allows us to perform user profiling and understand to what extent these features discriminate between QAnon and non-QAnon supporters on Parler. Our analysis is three-fold: (1) We quantify the number of QAnon supporters on Parler, finding that 34,913 users (5.5% of all users) openly report supporting the conspiracy. (2) We examine differences between QAnon vs. non-QAnon supporters. We find that QAnon supporters differ statistically significantly from non-QAnon supporters across multiple dimensions. For example, they have, on average, a larger number of followers, followees, and posts, and thus have a large impact on the Parler network. (3) We use machine learning to identify which user characteristics discriminate QAnon from non-QAnon supporters. We find that user features, linguistic features, network features, and content features, can - to a large extent - discriminate QAnon vs. non-QAnon supporters on Parler. In particular, we find that user features are highly discriminatory, followed by content features and linguistic features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statement of Removal AnnoBERT: Effectively Representing Multiple Annotators’ Label Choices to Improve Hate Speech Detection Just Another Day on Twitter: A Complete 24 Hours of Twitter Data #RoeOverturned: Twitter Dataset on the Abortion Rights Controversy SexWEs: Domain-Aware Word Embeddings via Cross-Lingual Semantic Specialisation for Chinese Sexism Detection in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1