氢在双燃料压缩点火发动机与替代生物燃料中的应用

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Johnson Matthey Technology Review Pub Date : 2023-01-01 DOI:10.1595/205651324x16963489202714
José Rodríguez-Fernández, Ángel Ramos, Víctor M. Domínguez, Blanca Giménez, Miriam Reyes, Juan J. Hernández
{"title":"氢在双燃料压缩点火发动机与替代生物燃料中的应用","authors":"José Rodríguez-Fernández, Ángel Ramos, Víctor M. Domínguez, Blanca Giménez, Miriam Reyes, Juan J. Hernández","doi":"10.1595/205651324x16963489202714","DOIUrl":null,"url":null,"abstract":"Recent progress has been made towards decarbonization of transport, which accounts for one quarter of the global carbon dioxide emissions. For the short-medium term, new EU and national energy and climate plans agree on a strategy based on the combination of increasing shares of electric vehicles with the promotion of sustainable fuels, especially if produced from residual feedstock and routes with low or zero net carbon emission. Hydrogen stands out among these fuels for its unique properties. This work analyses the potential of using hydrogen in a dual-fuel, compression-ignition engine running with three diesel-like fuels (conventional fossil diesel, advanced biodiesel and hydrotreated vegetable oil-HVO) and different hydrogen energy substitution ratios. The results were confronted with conventional diesel operation, revealing that dual-fuel combustion with hydrogen demands higher EGR rates and more advance combustion, leading to a remarked reduction of NOx emission at the expense of a penalty in energy consumption due mainly to unburnt hydrogen and wall heat losses. Unreacted hydrogen was ameliorated at high load. At low load, the use of biodiesel dual combustion permitted higher hydrogen substitution ratios and higher efficiencies than diesel and HVO.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"290 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Use in a Dual-Fuel Compression-Ignition Engine with Alternative Biofuels\",\"authors\":\"José Rodríguez-Fernández, Ángel Ramos, Víctor M. Domínguez, Blanca Giménez, Miriam Reyes, Juan J. Hernández\",\"doi\":\"10.1595/205651324x16963489202714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent progress has been made towards decarbonization of transport, which accounts for one quarter of the global carbon dioxide emissions. For the short-medium term, new EU and national energy and climate plans agree on a strategy based on the combination of increasing shares of electric vehicles with the promotion of sustainable fuels, especially if produced from residual feedstock and routes with low or zero net carbon emission. Hydrogen stands out among these fuels for its unique properties. This work analyses the potential of using hydrogen in a dual-fuel, compression-ignition engine running with three diesel-like fuels (conventional fossil diesel, advanced biodiesel and hydrotreated vegetable oil-HVO) and different hydrogen energy substitution ratios. The results were confronted with conventional diesel operation, revealing that dual-fuel combustion with hydrogen demands higher EGR rates and more advance combustion, leading to a remarked reduction of NOx emission at the expense of a penalty in energy consumption due mainly to unburnt hydrogen and wall heat losses. Unreacted hydrogen was ameliorated at high load. At low load, the use of biodiesel dual combustion permitted higher hydrogen substitution ratios and higher efficiencies than diesel and HVO.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1595/205651324x16963489202714\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1595/205651324x16963489202714","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近在交通运输脱碳方面取得了进展,交通运输占全球二氧化碳排放量的四分之一。在中短期内,新的欧盟和国家能源和气候计划达成了一项战略,该战略基于增加电动汽车的份额与促进可持续燃料的结合,特别是如果由剩余原料和低或零净碳排放的路线生产。氢以其独特的性质在这些燃料中脱颖而出。本研究分析了在使用三种类柴油燃料(传统化石柴油、先进生物柴油和加氢处理植物油)和不同氢能替代比的双燃料压缩点火发动机中使用氢的潜力。研究结果与传统柴油工况进行了对比,结果表明,氢双燃料燃烧需要更高的EGR率和更早的燃烧,从而显著减少了氮氧化物排放,但代价是能源消耗的损失,主要是由于未燃烧的氢和壁面热损失。未反应氢在高负荷下得到改善。在低负荷情况下,生物柴油双燃烧比柴油和HVO具有更高的氢替代率和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen Use in a Dual-Fuel Compression-Ignition Engine with Alternative Biofuels
Recent progress has been made towards decarbonization of transport, which accounts for one quarter of the global carbon dioxide emissions. For the short-medium term, new EU and national energy and climate plans agree on a strategy based on the combination of increasing shares of electric vehicles with the promotion of sustainable fuels, especially if produced from residual feedstock and routes with low or zero net carbon emission. Hydrogen stands out among these fuels for its unique properties. This work analyses the potential of using hydrogen in a dual-fuel, compression-ignition engine running with three diesel-like fuels (conventional fossil diesel, advanced biodiesel and hydrotreated vegetable oil-HVO) and different hydrogen energy substitution ratios. The results were confronted with conventional diesel operation, revealing that dual-fuel combustion with hydrogen demands higher EGR rates and more advance combustion, leading to a remarked reduction of NOx emission at the expense of a penalty in energy consumption due mainly to unburnt hydrogen and wall heat losses. Unreacted hydrogen was ameliorated at high load. At low load, the use of biodiesel dual combustion permitted higher hydrogen substitution ratios and higher efficiencies than diesel and HVO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Johnson Matthey Technology Review
Johnson Matthey Technology Review CHEMISTRY, PHYSICAL-
CiteScore
4.30
自引率
4.30%
发文量
48
审稿时长
12 weeks
期刊介绍: Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.
期刊最新文献
In the Lab: Artificial Metalloenzymes for Sustainable Chemical Production “Biotechnology Entrepreneurship: Leading, Managing and Commercializing Innovative Technologies” Johnson Matthey Highlights Microbubble Intensification of Bioprocessing “Fuel Cell and Hydrogen Technologies in Aviation”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1