{"title":"用于非阿贝尔状态操纵的新兴量子混合系统","authors":"Bhaskaran Muralidharan, Manohar Kumar, Chuan Li","doi":"10.3389/fnano.2023.1219975","DOIUrl":null,"url":null,"abstract":"The non-Abelian state has garnered considerable interest in the field of fundamental physics and future applications in quantum computing. In this review, we introduce the basic ideas of constructing the non-Abelian states in various systems from 1D to 3D and discuss the possible approaches to detect these states, including the Majorana bound states in a hybrid device and the v = 5/2 state in a fractional quantum Hall system.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":"7 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging quantum hybrid systems for non-Abelian-state manipulation\",\"authors\":\"Bhaskaran Muralidharan, Manohar Kumar, Chuan Li\",\"doi\":\"10.3389/fnano.2023.1219975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-Abelian state has garnered considerable interest in the field of fundamental physics and future applications in quantum computing. In this review, we introduce the basic ideas of constructing the non-Abelian states in various systems from 1D to 3D and discuss the possible approaches to detect these states, including the Majorana bound states in a hybrid device and the v = 5/2 state in a fractional quantum Hall system.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2023.1219975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2023.1219975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Emerging quantum hybrid systems for non-Abelian-state manipulation
The non-Abelian state has garnered considerable interest in the field of fundamental physics and future applications in quantum computing. In this review, we introduce the basic ideas of constructing the non-Abelian states in various systems from 1D to 3D and discuss the possible approaches to detect these states, including the Majorana bound states in a hybrid device and the v = 5/2 state in a fractional quantum Hall system.