Asia Othman Aljahdali, Afnan Habibullah, Huda Aljohani
{"title":"基于物联网的环境监测的高效安全访问控制","authors":"Asia Othman Aljahdali, Afnan Habibullah, Huda Aljohani","doi":"10.48084/etasr.6193","DOIUrl":null,"url":null,"abstract":"Environmental monitoring devices based on IoT collect a large amount of data about the environment and our surroundings. These data are collected and processed before being uploaded to third-party servers and accessed and viewed by ordinary or specialized users. However, they may hold sensitive information that should not be exposed to unauthorized users. Therefore, accessing this sensitive information must be strictly controlled and limited in order to prevent unauthorized access. This research intends to create an access control mechanism based on distributed ledger technologies. The idea is to use a hybrid of IOTA technology and Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) technology. The permissions to access these data are written in a token, and this token will be sent to the Tangle after being signcrypted with CP-ABSC. Consequently, the data will be safeguarded, their confidentiality and integrity will be maintained, and unauthorized individuals will be unable to access the information. The proposed system was evaluated in terms of performance and the results showed that the system is straightforward, rapid, and convenient to use. Furthermore, a security assessment was conducted by running several scenarios to evaluate its feasibility and protection.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Secure Access Control for IoT-based Environmental Monitoring\",\"authors\":\"Asia Othman Aljahdali, Afnan Habibullah, Huda Aljohani\",\"doi\":\"10.48084/etasr.6193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental monitoring devices based on IoT collect a large amount of data about the environment and our surroundings. These data are collected and processed before being uploaded to third-party servers and accessed and viewed by ordinary or specialized users. However, they may hold sensitive information that should not be exposed to unauthorized users. Therefore, accessing this sensitive information must be strictly controlled and limited in order to prevent unauthorized access. This research intends to create an access control mechanism based on distributed ledger technologies. The idea is to use a hybrid of IOTA technology and Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) technology. The permissions to access these data are written in a token, and this token will be sent to the Tangle after being signcrypted with CP-ABSC. Consequently, the data will be safeguarded, their confidentiality and integrity will be maintained, and unauthorized individuals will be unable to access the information. The proposed system was evaluated in terms of performance and the results showed that the system is straightforward, rapid, and convenient to use. Furthermore, a security assessment was conducted by running several scenarios to evaluate its feasibility and protection.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.6193\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient and Secure Access Control for IoT-based Environmental Monitoring
Environmental monitoring devices based on IoT collect a large amount of data about the environment and our surroundings. These data are collected and processed before being uploaded to third-party servers and accessed and viewed by ordinary or specialized users. However, they may hold sensitive information that should not be exposed to unauthorized users. Therefore, accessing this sensitive information must be strictly controlled and limited in order to prevent unauthorized access. This research intends to create an access control mechanism based on distributed ledger technologies. The idea is to use a hybrid of IOTA technology and Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) technology. The permissions to access these data are written in a token, and this token will be sent to the Tangle after being signcrypted with CP-ABSC. Consequently, the data will be safeguarded, their confidentiality and integrity will be maintained, and unauthorized individuals will be unable to access the information. The proposed system was evaluated in terms of performance and the results showed that the system is straightforward, rapid, and convenient to use. Furthermore, a security assessment was conducted by running several scenarios to evaluate its feasibility and protection.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.