一种改进的运动车辆下梁动力响应预测修正技术

IF 1.5 0 ENGINEERING, MULTIDISCIPLINARY Engineering, Technology & Applied Science Research Pub Date : 2023-10-13 DOI:10.48084/etasr.6129
Duy Hung Nguyen, Nguyen Dang Diem, Thi Kieu Pham
{"title":"一种改进的运动车辆下梁动力响应预测修正技术","authors":"Duy Hung Nguyen, Nguyen Dang Diem, Thi Kieu Pham","doi":"10.48084/etasr.6129","DOIUrl":null,"url":null,"abstract":"This study presents a correction approach that can capture the discontinuities in the bending moment and shear force in the dynamic analysis of beam-like structures traveled by a moving vehicle. The proposed approach was based on the Dynamic Modal Acceleration Method (DyMAM) to correct the dynamic response of the supporting structure with a reduced number of vibration modes. The use of a two-axle vehicle model was adopted to consider the pitching effect in the presence of surface irregularity and damping. The interacting forces between the beam and vehicle were filtered to avoid undesirable high-frequency contributions. Subsequently, a new formulation for the entire vehicle-beam system was obtained. The corresponding equation was solved using the Newmark numerical scheme to obtain the system responses in each time step. A numerical example was illustrated, showing that the proposed method was in close agreement with previous correction solutions in the vehicle-beam interaction analysis.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"122 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Correction Technique for the Prediction of the Dynamic Response of a Beam under a Moving Vehicle\",\"authors\":\"Duy Hung Nguyen, Nguyen Dang Diem, Thi Kieu Pham\",\"doi\":\"10.48084/etasr.6129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a correction approach that can capture the discontinuities in the bending moment and shear force in the dynamic analysis of beam-like structures traveled by a moving vehicle. The proposed approach was based on the Dynamic Modal Acceleration Method (DyMAM) to correct the dynamic response of the supporting structure with a reduced number of vibration modes. The use of a two-axle vehicle model was adopted to consider the pitching effect in the presence of surface irregularity and damping. The interacting forces between the beam and vehicle were filtered to avoid undesirable high-frequency contributions. Subsequently, a new formulation for the entire vehicle-beam system was obtained. The corresponding equation was solved using the Newmark numerical scheme to obtain the system responses in each time step. A numerical example was illustrated, showing that the proposed method was in close agreement with previous correction solutions in the vehicle-beam interaction analysis.\",\"PeriodicalId\":11826,\"journal\":{\"name\":\"Engineering, Technology & Applied Science Research\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Technology & Applied Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.6129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种能够捕捉运动车辆行驶的类梁结构动力分析中弯矩和剪力不连续性的修正方法。该方法基于动态模态加速法(DyMAM),通过减少振动模态数来修正支撑结构的动态响应。采用双轴车辆模型,考虑了存在表面不平整和阻尼时的俯仰效应。梁和车辆之间的相互作用力进行了过滤,以避免不希望的高频贡献。在此基础上,推导出了整个车梁系统的新公式。采用Newmark数值格式求解相应方程,得到系统在每个时间步长的响应。数值算例表明,该方法与以往车梁相互作用分析中的修正解基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Correction Technique for the Prediction of the Dynamic Response of a Beam under a Moving Vehicle
This study presents a correction approach that can capture the discontinuities in the bending moment and shear force in the dynamic analysis of beam-like structures traveled by a moving vehicle. The proposed approach was based on the Dynamic Modal Acceleration Method (DyMAM) to correct the dynamic response of the supporting structure with a reduced number of vibration modes. The use of a two-axle vehicle model was adopted to consider the pitching effect in the presence of surface irregularity and damping. The interacting forces between the beam and vehicle were filtered to avoid undesirable high-frequency contributions. Subsequently, a new formulation for the entire vehicle-beam system was obtained. The corresponding equation was solved using the Newmark numerical scheme to obtain the system responses in each time step. A numerical example was illustrated, showing that the proposed method was in close agreement with previous correction solutions in the vehicle-beam interaction analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering, Technology & Applied Science Research
Engineering, Technology & Applied Science Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
46.70%
发文量
222
审稿时长
11 weeks
期刊最新文献
Malware Attack Detection in Large Scale Networks using the Ensemble Deep Restricted Boltzmann Machine Enhancement of Power System Security by the Intelligent Control of a Static Synchronous Series Compensator Mix Design of Fly Ash and GGBS based Geopolymer Concrete activated with Water Glass A New Approach on the Egyptian Black Sand Ilmenite Alteration Processes Boric Acid as a Safe Insecticide for Controlling the Mediterranean Fruit Fly Ceratitis Capitata Wiedemann (Diptera: Tephritidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1