Syed Ibrahim Syed Mahamood Shazuli, Arunachalam Saravanan
{"title":"基于深度学习的眼底图像检索与分类的蝠鲼觅食优化算法用于糖尿病视网膜病变分级","authors":"Syed Ibrahim Syed Mahamood Shazuli, Arunachalam Saravanan","doi":"10.48084/etasr.6226","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy (DR) is a major source of sightlessness and permanent visual damage. Manual Analysis of DR is a labor-intensive and costly task that requires skilled ophthalmologists to observe and evaluate DR utilizing digital fundus images. The images can be employed for analysis and disease screening. This laborious task can gain a great advantage in automated detection by exploiting Artificial Intelligence (AI) techniques. Content-Based Image Retrieval (CBIR) approaches are utilized to retrieve related images in massive databases and are helpful in many application regions and most healthcare systems. With this motivation, this article develops the new Manta Ray Foraging Optimizer with Deep Learning-based Fundus Image Retrieval and Classification (MRFODL-FIRC) approach for the grading of DR. The suggested MRFODL-FIRC model investigates the retinal fundus imaging effectively to retrieve the relevant images and identify class labels. To achieve this, the MRFODL-FIRC technique uses Median Filtering (MF) as a pre-processing step. The Capsule Network (CapsNet) model is used to produce feature vectors with the MRFO algorithm as a hyperparameter optimizer. For the image retrieval process, the Manhattan distance metric is used. Finally, the Variational Autoencoder (VAE) model is used for recognizing and classifying DR. The investigational assessment of the MRFODL-FIRC technique is accomplished on medical DR and the outputs highlighted the improved performance of the MRFODL-FIRC algorithm over the current approaches.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manta Ray Foraging Optimizer with Deep Learning-based Fundus Image Retrieval and Classification for Diabetic Retinopathy Grading\",\"authors\":\"Syed Ibrahim Syed Mahamood Shazuli, Arunachalam Saravanan\",\"doi\":\"10.48084/etasr.6226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic Retinopathy (DR) is a major source of sightlessness and permanent visual damage. Manual Analysis of DR is a labor-intensive and costly task that requires skilled ophthalmologists to observe and evaluate DR utilizing digital fundus images. The images can be employed for analysis and disease screening. This laborious task can gain a great advantage in automated detection by exploiting Artificial Intelligence (AI) techniques. Content-Based Image Retrieval (CBIR) approaches are utilized to retrieve related images in massive databases and are helpful in many application regions and most healthcare systems. With this motivation, this article develops the new Manta Ray Foraging Optimizer with Deep Learning-based Fundus Image Retrieval and Classification (MRFODL-FIRC) approach for the grading of DR. The suggested MRFODL-FIRC model investigates the retinal fundus imaging effectively to retrieve the relevant images and identify class labels. To achieve this, the MRFODL-FIRC technique uses Median Filtering (MF) as a pre-processing step. The Capsule Network (CapsNet) model is used to produce feature vectors with the MRFO algorithm as a hyperparameter optimizer. For the image retrieval process, the Manhattan distance metric is used. Finally, the Variational Autoencoder (VAE) model is used for recognizing and classifying DR. The investigational assessment of the MRFODL-FIRC technique is accomplished on medical DR and the outputs highlighted the improved performance of the MRFODL-FIRC algorithm over the current approaches.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.6226\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6226","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Manta Ray Foraging Optimizer with Deep Learning-based Fundus Image Retrieval and Classification for Diabetic Retinopathy Grading
Diabetic Retinopathy (DR) is a major source of sightlessness and permanent visual damage. Manual Analysis of DR is a labor-intensive and costly task that requires skilled ophthalmologists to observe and evaluate DR utilizing digital fundus images. The images can be employed for analysis and disease screening. This laborious task can gain a great advantage in automated detection by exploiting Artificial Intelligence (AI) techniques. Content-Based Image Retrieval (CBIR) approaches are utilized to retrieve related images in massive databases and are helpful in many application regions and most healthcare systems. With this motivation, this article develops the new Manta Ray Foraging Optimizer with Deep Learning-based Fundus Image Retrieval and Classification (MRFODL-FIRC) approach for the grading of DR. The suggested MRFODL-FIRC model investigates the retinal fundus imaging effectively to retrieve the relevant images and identify class labels. To achieve this, the MRFODL-FIRC technique uses Median Filtering (MF) as a pre-processing step. The Capsule Network (CapsNet) model is used to produce feature vectors with the MRFO algorithm as a hyperparameter optimizer. For the image retrieval process, the Manhattan distance metric is used. Finally, the Variational Autoencoder (VAE) model is used for recognizing and classifying DR. The investigational assessment of the MRFODL-FIRC technique is accomplished on medical DR and the outputs highlighted the improved performance of the MRFODL-FIRC algorithm over the current approaches.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.