{"title":"轻质纤维增强聚苯乙烯骨料自密实混凝土梁的结构性能","authors":"Rafaa Mahmood Abbas, Rawah Khalid Rakaa","doi":"10.48084/etasr.6217","DOIUrl":null,"url":null,"abstract":"This study aims to investigate experimentally the flexural behavior of lightweight Self-Compacted Concrete (SCC) beams made by Expanded Polystyrene (EPS) concrete and reinforced with rebars and steel fibers. To achieve the aims of this study, seven simply supported EPS lightweight fiber-reinforced concrete beams were fabricated and tested up to failure to study the effects of EPS content and the volume fraction of the steel fibers on their flexural behavior. The tested specimens were divided into two groups with one additional reference beam to be cast without using EPS or steel fibers. In the first group, three lightweight specimens were constructed using 25% EPS beads and were reinforced with 0%, 0.75%, and 1.5% steel fiber volume fractions. The second group is similar to the first group but was fabricated using 50% EPS beads. The test results showed that the mechanical properties of the hardened concrete were significantly reduced due to polystyrene EPS beads with some enhancement when steel fibers were added to the concrete mix. The flexure strength of EPS-LWT concrete beams was significantly reduced due to the polystyrene EPS beads. Furthermore, the results revealed remarkable enhancement in the flexure strength of the tested beams due to the steel fiber reinforcement.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"127 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural Performance of Lightweight Fiber Reinforced Polystyrene Aggregate Self-Compacted Concrete Beams\",\"authors\":\"Rafaa Mahmood Abbas, Rawah Khalid Rakaa\",\"doi\":\"10.48084/etasr.6217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate experimentally the flexural behavior of lightweight Self-Compacted Concrete (SCC) beams made by Expanded Polystyrene (EPS) concrete and reinforced with rebars and steel fibers. To achieve the aims of this study, seven simply supported EPS lightweight fiber-reinforced concrete beams were fabricated and tested up to failure to study the effects of EPS content and the volume fraction of the steel fibers on their flexural behavior. The tested specimens were divided into two groups with one additional reference beam to be cast without using EPS or steel fibers. In the first group, three lightweight specimens were constructed using 25% EPS beads and were reinforced with 0%, 0.75%, and 1.5% steel fiber volume fractions. The second group is similar to the first group but was fabricated using 50% EPS beads. The test results showed that the mechanical properties of the hardened concrete were significantly reduced due to polystyrene EPS beads with some enhancement when steel fibers were added to the concrete mix. The flexure strength of EPS-LWT concrete beams was significantly reduced due to the polystyrene EPS beads. Furthermore, the results revealed remarkable enhancement in the flexure strength of the tested beams due to the steel fiber reinforcement.\",\"PeriodicalId\":11826,\"journal\":{\"name\":\"Engineering, Technology & Applied Science Research\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Technology & Applied Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.6217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
This study aims to investigate experimentally the flexural behavior of lightweight Self-Compacted Concrete (SCC) beams made by Expanded Polystyrene (EPS) concrete and reinforced with rebars and steel fibers. To achieve the aims of this study, seven simply supported EPS lightweight fiber-reinforced concrete beams were fabricated and tested up to failure to study the effects of EPS content and the volume fraction of the steel fibers on their flexural behavior. The tested specimens were divided into two groups with one additional reference beam to be cast without using EPS or steel fibers. In the first group, three lightweight specimens were constructed using 25% EPS beads and were reinforced with 0%, 0.75%, and 1.5% steel fiber volume fractions. The second group is similar to the first group but was fabricated using 50% EPS beads. The test results showed that the mechanical properties of the hardened concrete were significantly reduced due to polystyrene EPS beads with some enhancement when steel fibers were added to the concrete mix. The flexure strength of EPS-LWT concrete beams was significantly reduced due to the polystyrene EPS beads. Furthermore, the results revealed remarkable enhancement in the flexure strength of the tested beams due to the steel fiber reinforcement.