Aaron Kirtland, Jonah Botvinick-Greenhouse, Marianne DeBrito, Megan Osborne, Casey Johnson, Robert S. Martin, Samuel J. Araki, Daniel Q. Eckhardt
{"title":"耦合系统非线性降噪的非结构网格方法","authors":"Aaron Kirtland, Jonah Botvinick-Greenhouse, Marianne DeBrito, Megan Osborne, Casey Johnson, Robert S. Martin, Samuel J. Araki, Daniel Q. Eckhardt","doi":"10.1137/22m152092x","DOIUrl":null,"url":null,"abstract":"To address noise inherent in electronic data acquisition systems and real-world sources, Araki et al. [Phys. D, 417 (2021), 132819] demonstrated a grid-based nonlinear technique to remove noise from a chaotic signal, leveraging a clean high-fidelity signal from the same dynamical system and ensemble averaging in multidimensional phase space. This method achieved denoising of a time series data with 100% added noise but suffered in regions of low data density. To improve this grid-based method, here an unstructured mesh based on triangulations and Voronoi diagrams is used to accomplish the same task. The unstructured mesh more uniformly distributes data samples over mesh cells to improve the accuracy of the reconstructed signal. By empirically balancing bias and variance errors in selecting the number of unstructured cells as a function of the number of available samples, the method achieves asymptotic statistical convergence with known test data and reduces synthetic noise on experimental signals from Hall effect thrusters with greater success than the original grid-based strategy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Unstructured Mesh Approach to Nonlinear Noise Reduction for Coupled Systems\",\"authors\":\"Aaron Kirtland, Jonah Botvinick-Greenhouse, Marianne DeBrito, Megan Osborne, Casey Johnson, Robert S. Martin, Samuel J. Araki, Daniel Q. Eckhardt\",\"doi\":\"10.1137/22m152092x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address noise inherent in electronic data acquisition systems and real-world sources, Araki et al. [Phys. D, 417 (2021), 132819] demonstrated a grid-based nonlinear technique to remove noise from a chaotic signal, leveraging a clean high-fidelity signal from the same dynamical system and ensemble averaging in multidimensional phase space. This method achieved denoising of a time series data with 100% added noise but suffered in regions of low data density. To improve this grid-based method, here an unstructured mesh based on triangulations and Voronoi diagrams is used to accomplish the same task. The unstructured mesh more uniformly distributes data samples over mesh cells to improve the accuracy of the reconstructed signal. By empirically balancing bias and variance errors in selecting the number of unstructured cells as a function of the number of available samples, the method achieves asymptotic statistical convergence with known test data and reduces synthetic noise on experimental signals from Hall effect thrusters with greater success than the original grid-based strategy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m152092x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m152092x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Unstructured Mesh Approach to Nonlinear Noise Reduction for Coupled Systems
To address noise inherent in electronic data acquisition systems and real-world sources, Araki et al. [Phys. D, 417 (2021), 132819] demonstrated a grid-based nonlinear technique to remove noise from a chaotic signal, leveraging a clean high-fidelity signal from the same dynamical system and ensemble averaging in multidimensional phase space. This method achieved denoising of a time series data with 100% added noise but suffered in regions of low data density. To improve this grid-based method, here an unstructured mesh based on triangulations and Voronoi diagrams is used to accomplish the same task. The unstructured mesh more uniformly distributes data samples over mesh cells to improve the accuracy of the reconstructed signal. By empirically balancing bias and variance errors in selecting the number of unstructured cells as a function of the number of available samples, the method achieves asymptotic statistical convergence with known test data and reduces synthetic noise on experimental signals from Hall effect thrusters with greater success than the original grid-based strategy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.