Genevieve L. Coffey, Chris Rollins, Russ J. Van Dissen, David A. Rhoades, Matthew C. Gerstenberger, Nicola J. Litchfield, Kiran K. S. Thingbaijam
{"title":"新西兰国家地震危险性模型2022年修订版的古地震地震重现区间推导","authors":"Genevieve L. Coffey, Chris Rollins, Russ J. Van Dissen, David A. Rhoades, Matthew C. Gerstenberger, Nicola J. Litchfield, Kiran K. S. Thingbaijam","doi":"10.1785/0220230197","DOIUrl":null,"url":null,"abstract":"Abstract Recurrence intervals of ground-surface rupturing earthquakes are one of numerous datasets used to constrain the rates of fault ruptures in the 2022 revision of the New Zealand National Seismic Hazard Model (NZ NSHM 2022). Paleoearthquake timing and single-event displacement (SED) data in the New Zealand Paleoseismic Site Database version 1.0 alongside geologic and geodetic slip rates from the New Zealand Community Fault Model version 1.0 and NZ NSHM 2022 Geodetic Deformation Model were used to estimate recurrence intervals on faults across New Zealand for inclusion in the NZ NSHM 2022. Past earthquake timings were fit with lognormal, exponential, and Brownian Passage Time recurrence models to derive probability density functions (PDFs) of mean recurrence interval (MRI) in a Bayesian framework. At some sites, SED and slip-rate (SR) data were used to estimate PDFs of MRI; and at sites where timings, slip rate, and displacement data are available, the timings-based and slip-based PDFs were combined to develop tighter constraints on MRI. Using these approaches, we produce a database of maximum-likelihood MRIs and their uncertainties for 80 sites across New Zealand. The resulting recurrence interval dataset is publicly available and is the largest such dataset in New Zealand to date. It provides a valuable resource for future seismic hazard modeling and highlights areas that would benefit from future study.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"13 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Paleoseismic Earthquake Recurrence Interval Derivation for the 2022 Revision of the New Zealand National Seismic Hazard Model\",\"authors\":\"Genevieve L. Coffey, Chris Rollins, Russ J. Van Dissen, David A. Rhoades, Matthew C. Gerstenberger, Nicola J. Litchfield, Kiran K. S. Thingbaijam\",\"doi\":\"10.1785/0220230197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recurrence intervals of ground-surface rupturing earthquakes are one of numerous datasets used to constrain the rates of fault ruptures in the 2022 revision of the New Zealand National Seismic Hazard Model (NZ NSHM 2022). Paleoearthquake timing and single-event displacement (SED) data in the New Zealand Paleoseismic Site Database version 1.0 alongside geologic and geodetic slip rates from the New Zealand Community Fault Model version 1.0 and NZ NSHM 2022 Geodetic Deformation Model were used to estimate recurrence intervals on faults across New Zealand for inclusion in the NZ NSHM 2022. Past earthquake timings were fit with lognormal, exponential, and Brownian Passage Time recurrence models to derive probability density functions (PDFs) of mean recurrence interval (MRI) in a Bayesian framework. At some sites, SED and slip-rate (SR) data were used to estimate PDFs of MRI; and at sites where timings, slip rate, and displacement data are available, the timings-based and slip-based PDFs were combined to develop tighter constraints on MRI. Using these approaches, we produce a database of maximum-likelihood MRIs and their uncertainties for 80 sites across New Zealand. The resulting recurrence interval dataset is publicly available and is the largest such dataset in New Zealand to date. It provides a valuable resource for future seismic hazard modeling and highlights areas that would benefit from future study.\",\"PeriodicalId\":21687,\"journal\":{\"name\":\"Seismological Research Letters\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230197\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230197","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Paleoseismic Earthquake Recurrence Interval Derivation for the 2022 Revision of the New Zealand National Seismic Hazard Model
Abstract Recurrence intervals of ground-surface rupturing earthquakes are one of numerous datasets used to constrain the rates of fault ruptures in the 2022 revision of the New Zealand National Seismic Hazard Model (NZ NSHM 2022). Paleoearthquake timing and single-event displacement (SED) data in the New Zealand Paleoseismic Site Database version 1.0 alongside geologic and geodetic slip rates from the New Zealand Community Fault Model version 1.0 and NZ NSHM 2022 Geodetic Deformation Model were used to estimate recurrence intervals on faults across New Zealand for inclusion in the NZ NSHM 2022. Past earthquake timings were fit with lognormal, exponential, and Brownian Passage Time recurrence models to derive probability density functions (PDFs) of mean recurrence interval (MRI) in a Bayesian framework. At some sites, SED and slip-rate (SR) data were used to estimate PDFs of MRI; and at sites where timings, slip rate, and displacement data are available, the timings-based and slip-based PDFs were combined to develop tighter constraints on MRI. Using these approaches, we produce a database of maximum-likelihood MRIs and their uncertainties for 80 sites across New Zealand. The resulting recurrence interval dataset is publicly available and is the largest such dataset in New Zealand to date. It provides a valuable resource for future seismic hazard modeling and highlights areas that would benefit from future study.