{"title":"肝癌细胞来源的细胞外小泡相关CD147可作为诊断标志物,并通过PI3K/Akt通路促进内皮细胞血管生成","authors":"De-Fa Huang, Wen-Juan Zhang, Jie Chen, Zhi-Gang Jiao, Xiao-Ling Wang, Ding-Yu Rao, Wei-Song Li, Die Hu, Fang-Fang Xie, Xiao-Xing Wang, Zheng-Zhe Li, Xiao-Mei Yi, Ji-Yang Wu, Yu Jiang, Qi Wang, Tian-Yu Zhong","doi":"10.20517/evcna.2023.30","DOIUrl":null,"url":null,"abstract":"Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The process of HCC development is closely related to angiogenesis. Plasma exosomes have diagnostic value in many diseases and have become a current research hotspot. We aimed to identify a key molecule in small extracellular vesicles (sEVs) involved in angiogenesis as a diagnostic marker for HCC and uncover the mechanism underlying its regulation in the angiogenesis process. Methods: Nano‐flow cytometer (nFCM) was used to detect CD147 expression in plasma-derived sEVs in 155 HCC patients, 59 liver cirrhosis (LC), and 82 healthy donors (HD). The mechanism of hepatocellular carcinoma cell-derived sEVs CD147 promoting angiogenesis was elucidated by cell proliferation assay, scratch wound healing assay, transwell assay, tube formation assay, and in vivo Matrigel plug angiogenesis assay. Results: We found that CD147 expression was significantly higher in HCC tissue samples than in normal tissues. We also found a significantly larger number of CD147-positive small extracellular vesicles (CD147+ sEVs) in the plasma of HCC patients than LC patients and HD. Furthermore, we showed that hepatocellular carcinoma cell (HepG2)-derived CD147+ sEVs promoted cell proliferation, migration, invasion, and angiogenesis in human umbilical vein endothelial cells. The CD147+ sEVs upregulated vascular endothelial growth factor A (VEGFA) by activating the PI3K/Akt pathway, thereby promoting angiogenesis. Conclusion: HCC-derived sEVs-associated CD147 serves as a diagnostic marker and promotes endothelial cell angiogenesis via the PI3K/Akt pathway.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatocellular carcinoma cell-derived small extracellular vesicle-associated CD147 serves as a diagnostic marker and promotes endothelial cell angiogenesis via the PI3K/Akt pathway\",\"authors\":\"De-Fa Huang, Wen-Juan Zhang, Jie Chen, Zhi-Gang Jiao, Xiao-Ling Wang, Ding-Yu Rao, Wei-Song Li, Die Hu, Fang-Fang Xie, Xiao-Xing Wang, Zheng-Zhe Li, Xiao-Mei Yi, Ji-Yang Wu, Yu Jiang, Qi Wang, Tian-Yu Zhong\",\"doi\":\"10.20517/evcna.2023.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The process of HCC development is closely related to angiogenesis. Plasma exosomes have diagnostic value in many diseases and have become a current research hotspot. We aimed to identify a key molecule in small extracellular vesicles (sEVs) involved in angiogenesis as a diagnostic marker for HCC and uncover the mechanism underlying its regulation in the angiogenesis process. Methods: Nano‐flow cytometer (nFCM) was used to detect CD147 expression in plasma-derived sEVs in 155 HCC patients, 59 liver cirrhosis (LC), and 82 healthy donors (HD). The mechanism of hepatocellular carcinoma cell-derived sEVs CD147 promoting angiogenesis was elucidated by cell proliferation assay, scratch wound healing assay, transwell assay, tube formation assay, and in vivo Matrigel plug angiogenesis assay. Results: We found that CD147 expression was significantly higher in HCC tissue samples than in normal tissues. We also found a significantly larger number of CD147-positive small extracellular vesicles (CD147+ sEVs) in the plasma of HCC patients than LC patients and HD. Furthermore, we showed that hepatocellular carcinoma cell (HepG2)-derived CD147+ sEVs promoted cell proliferation, migration, invasion, and angiogenesis in human umbilical vein endothelial cells. The CD147+ sEVs upregulated vascular endothelial growth factor A (VEGFA) by activating the PI3K/Akt pathway, thereby promoting angiogenesis. Conclusion: HCC-derived sEVs-associated CD147 serves as a diagnostic marker and promotes endothelial cell angiogenesis via the PI3K/Akt pathway.\",\"PeriodicalId\":73008,\"journal\":{\"name\":\"Extracellular vesicles and circulating nucleic acids\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracellular vesicles and circulating nucleic acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/evcna.2023.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2023.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hepatocellular carcinoma cell-derived small extracellular vesicle-associated CD147 serves as a diagnostic marker and promotes endothelial cell angiogenesis via the PI3K/Akt pathway
Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The process of HCC development is closely related to angiogenesis. Plasma exosomes have diagnostic value in many diseases and have become a current research hotspot. We aimed to identify a key molecule in small extracellular vesicles (sEVs) involved in angiogenesis as a diagnostic marker for HCC and uncover the mechanism underlying its regulation in the angiogenesis process. Methods: Nano‐flow cytometer (nFCM) was used to detect CD147 expression in plasma-derived sEVs in 155 HCC patients, 59 liver cirrhosis (LC), and 82 healthy donors (HD). The mechanism of hepatocellular carcinoma cell-derived sEVs CD147 promoting angiogenesis was elucidated by cell proliferation assay, scratch wound healing assay, transwell assay, tube formation assay, and in vivo Matrigel plug angiogenesis assay. Results: We found that CD147 expression was significantly higher in HCC tissue samples than in normal tissues. We also found a significantly larger number of CD147-positive small extracellular vesicles (CD147+ sEVs) in the plasma of HCC patients than LC patients and HD. Furthermore, we showed that hepatocellular carcinoma cell (HepG2)-derived CD147+ sEVs promoted cell proliferation, migration, invasion, and angiogenesis in human umbilical vein endothelial cells. The CD147+ sEVs upregulated vascular endothelial growth factor A (VEGFA) by activating the PI3K/Akt pathway, thereby promoting angiogenesis. Conclusion: HCC-derived sEVs-associated CD147 serves as a diagnostic marker and promotes endothelial cell angiogenesis via the PI3K/Akt pathway.