{"title":"宝莱坞电影国际收入的早期预测——强调同步上映而非连续上映","authors":"Chiranjib Paul, Prabir Kumar Das","doi":"10.1177/09722629231172048","DOIUrl":null,"url":null,"abstract":"Bollywood movies made in the Hindi language are regarded as one of the most popular Indian movies. Bollywood movies like other Indian movies are successful in retaining their characteristics, which is significantly different than Hollywood movies. Overseas earnings contribute a significant pie of Bollywood movies’ total revenue. International revenue prediction requires a new approach due to the changing release strategy by the investors. Movie investors worldwide are moving away from sequential release first in the domestic market followed by release in the international markets to simultaneous release both in the domestic and the international markets. Revenue prediction at an early stage before committing money to the project is more valuable than prediction at a later stage just before or after the movie’s release. We utilize multiple machine learning algorithms to improve the baseline prediction accuracy significantly. Extreme gradient boosting, the best algorithm, reduces the baseline prediction error by 18.05%. Adopting different algorithms to different scenarios improves prediction accuracy relative to applying one algorithm across all scenarios. As an example, robust regression generates the highest prediction accuracy for movies with higher star power, whereas extreme gradient boosting achieves the highest prediction accuracy for movies with lower star power. More accurate prediction before committing money to the movie project strengthens investors’ judgement and reduces investment risk. Our study addresses a new trend of simultaneous movie releases in domestic and international markets and predicts international revenue without knowledge of domestic performance.","PeriodicalId":44860,"journal":{"name":"Vision-The Journal of Business Perspective","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early-stage Prediction of International Revenue of Bollywood Movies—Emphasis on Simultaneous Over Sequential Release\",\"authors\":\"Chiranjib Paul, Prabir Kumar Das\",\"doi\":\"10.1177/09722629231172048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bollywood movies made in the Hindi language are regarded as one of the most popular Indian movies. Bollywood movies like other Indian movies are successful in retaining their characteristics, which is significantly different than Hollywood movies. Overseas earnings contribute a significant pie of Bollywood movies’ total revenue. International revenue prediction requires a new approach due to the changing release strategy by the investors. Movie investors worldwide are moving away from sequential release first in the domestic market followed by release in the international markets to simultaneous release both in the domestic and the international markets. Revenue prediction at an early stage before committing money to the project is more valuable than prediction at a later stage just before or after the movie’s release. We utilize multiple machine learning algorithms to improve the baseline prediction accuracy significantly. Extreme gradient boosting, the best algorithm, reduces the baseline prediction error by 18.05%. Adopting different algorithms to different scenarios improves prediction accuracy relative to applying one algorithm across all scenarios. As an example, robust regression generates the highest prediction accuracy for movies with higher star power, whereas extreme gradient boosting achieves the highest prediction accuracy for movies with lower star power. More accurate prediction before committing money to the movie project strengthens investors’ judgement and reduces investment risk. Our study addresses a new trend of simultaneous movie releases in domestic and international markets and predicts international revenue without knowledge of domestic performance.\",\"PeriodicalId\":44860,\"journal\":{\"name\":\"Vision-The Journal of Business Perspective\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision-The Journal of Business Perspective\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09722629231172048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision-The Journal of Business Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09722629231172048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
Early-stage Prediction of International Revenue of Bollywood Movies—Emphasis on Simultaneous Over Sequential Release
Bollywood movies made in the Hindi language are regarded as one of the most popular Indian movies. Bollywood movies like other Indian movies are successful in retaining their characteristics, which is significantly different than Hollywood movies. Overseas earnings contribute a significant pie of Bollywood movies’ total revenue. International revenue prediction requires a new approach due to the changing release strategy by the investors. Movie investors worldwide are moving away from sequential release first in the domestic market followed by release in the international markets to simultaneous release both in the domestic and the international markets. Revenue prediction at an early stage before committing money to the project is more valuable than prediction at a later stage just before or after the movie’s release. We utilize multiple machine learning algorithms to improve the baseline prediction accuracy significantly. Extreme gradient boosting, the best algorithm, reduces the baseline prediction error by 18.05%. Adopting different algorithms to different scenarios improves prediction accuracy relative to applying one algorithm across all scenarios. As an example, robust regression generates the highest prediction accuracy for movies with higher star power, whereas extreme gradient boosting achieves the highest prediction accuracy for movies with lower star power. More accurate prediction before committing money to the movie project strengthens investors’ judgement and reduces investment risk. Our study addresses a new trend of simultaneous movie releases in domestic and international markets and predicts international revenue without knowledge of domestic performance.
期刊介绍:
Vision-The Journal of Business Perspective is a quarterly peer-reviewed journal of the Management Development Institute, Gurgaon, India published by SAGE Publications. This journal contains papers in all functional areas of management, including economic and business environment. The journal is premised on creating influence on the academic as well as corporate thinkers. Vision-The Journal of Business Perspective is published in March, June, September and December every year. Its targeted readers are researchers, academics involved in research, and corporates with excellent professional backgrounds from India and other parts of the globe. Its contents have been often used as supportive course materials by the academics and corporate professionals. The journal has been providing opportunity for discussion and exchange of ideas across the widest spectrum of scholarly opinions to promote theoretical, empirical and comparative research on problems confronting the business world. Most of the contributors to this journal range from the outstanding and the well published to the upcoming young academics and corporate functionaries. The journal publishes theoretical as well as applied research works.