迈向所有现存爬行动物物种的数字化描述

Megataxa Pub Date : 2023-10-31 DOI:10.11646/megataxa.10.1.6
PETER UETZ, YAA ADARKWA DARKO, DUSTIN ZELIFF
{"title":"迈向所有现存爬行动物物种的数字化描述","authors":"PETER UETZ, YAA ADARKWA DARKO, DUSTIN ZELIFF","doi":"10.11646/megataxa.10.1.6","DOIUrl":null,"url":null,"abstract":"Vertebrate databases have been slow to digitize species descriptions. One of them, the Reptile Database (http://www.reptile-database.org), has accumulated ~8,000 species descriptions for ~3,000 species of snakes, ~5,000 species of lizards, and ~150 species of turtles and crocodiles. Here we discuss how this data contributes to character analysis, species identification, but also to integration with other data sources such as citizen science observations (which depend on correct identifications). Importantly, the data described here may serve as training data for machine learning projects and we present examples of species comparisons using ChatGPT. While these AI-driven comparisons are still erroneous, we expect substantial improvements in the near future. We request the herpetological community to help complete our public collection of species descriptions and suggest that other species databases follow suit and provide similar data for their taxa.","PeriodicalId":52569,"journal":{"name":"Megataxa","volume":"44 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards digital descriptions of all extant reptile species\",\"authors\":\"PETER UETZ, YAA ADARKWA DARKO, DUSTIN ZELIFF\",\"doi\":\"10.11646/megataxa.10.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertebrate databases have been slow to digitize species descriptions. One of them, the Reptile Database (http://www.reptile-database.org), has accumulated ~8,000 species descriptions for ~3,000 species of snakes, ~5,000 species of lizards, and ~150 species of turtles and crocodiles. Here we discuss how this data contributes to character analysis, species identification, but also to integration with other data sources such as citizen science observations (which depend on correct identifications). Importantly, the data described here may serve as training data for machine learning projects and we present examples of species comparisons using ChatGPT. While these AI-driven comparisons are still erroneous, we expect substantial improvements in the near future. We request the herpetological community to help complete our public collection of species descriptions and suggest that other species databases follow suit and provide similar data for their taxa.\",\"PeriodicalId\":52569,\"journal\":{\"name\":\"Megataxa\",\"volume\":\"44 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Megataxa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11646/megataxa.10.1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Megataxa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11646/megataxa.10.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脊椎动物数据库在数字化物种描述方面进展缓慢。其中,爬行动物数据库(http://www.reptile-database.org)收集了约3000种蛇、约5000种蜥蜴、约150种乌龟和鳄鱼的约8000种描述。在这里,我们讨论这些数据如何有助于特征分析,物种鉴定,以及与其他数据源(如公民科学观察)的整合(这取决于正确的鉴定)。重要的是,这里描述的数据可以作为机器学习项目的训练数据,我们提供了使用ChatGPT进行物种比较的示例。虽然这些人工智能驱动的比较仍然是错误的,但我们预计在不久的将来会有实质性的改进。我们要求爬虫界帮助完成我们的物种描述公共收集,并建议其他物种数据库效仿并为其分类群提供类似的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards digital descriptions of all extant reptile species
Vertebrate databases have been slow to digitize species descriptions. One of them, the Reptile Database (http://www.reptile-database.org), has accumulated ~8,000 species descriptions for ~3,000 species of snakes, ~5,000 species of lizards, and ~150 species of turtles and crocodiles. Here we discuss how this data contributes to character analysis, species identification, but also to integration with other data sources such as citizen science observations (which depend on correct identifications). Importantly, the data described here may serve as training data for machine learning projects and we present examples of species comparisons using ChatGPT. While these AI-driven comparisons are still erroneous, we expect substantial improvements in the near future. We request the herpetological community to help complete our public collection of species descriptions and suggest that other species databases follow suit and provide similar data for their taxa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
8 weeks
期刊最新文献
All genera of the world: Subfamilies Dynastinae, Rutelinae and Cetoniinae (Animalia: Arthropoda: Insecta: Coleoptera: Scarabaeidae) Systematics and palaeobiology of kangaroos of the late Cenozoic genus Protemnodon (Marsupialia, Macropodidae) A decade of Biotaxa.org: community-supported online library for taxonomic journals enhanced their publication, access and preservation Publication and impact: a bibliometric survey of Megataxa 1–10 Towards digital descriptions of all extant reptile species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1