GP SHARADHI, H AVINASHE, N DUBEY, K DANALAKOTI, S GHOSH, S SACHAN, S CHOUDHARY
{"title":"面包小麦f4分离群体籽粒产量及其性状的相关及通径分析","authors":"GP SHARADHI, H AVINASHE, N DUBEY, K DANALAKOTI, S GHOSH, S SACHAN, S CHOUDHARY","doi":"10.54910/sabrao2023.55.5.19","DOIUrl":null,"url":null,"abstract":"Wheat breeders focus on enhancing the production potential of bread wheat by creating new varieties with acceptable genetic makeup to combat the pressure of rising human population consumption. Research to resolve this issue transpired during the Rabi of November 2021– April 2022 at the Lovely Professional University, Punjab, India. Developing the field trial used an augmented block design, 45 F4 segregating population genotypes, and five checks. Data on characteristics, such as days to 50% flowering, days to maturity, number of productive tillers, plant height, ear length, and weight, number of spikelets ear-1 and grains ear-1, 1000 grain weight, grain yield plant-1, biological yield, harvest index, and chlorophyll index underwent assessment. Highly significant variations between the genotypes for all the traits had the analysis of variance determining these, except 1000 grain weight and chlorophyll index in the treatment test and the test versus check. In this study, the harvest index, biological yield plant-1, and grain yield plant-1 are all higher for the phenotypic and genotypic coefficient of variances (PCV, GCV). The genetic advancement and heritability are highest for days to maturity, ear weight, number of grains ear-1, biological yield plant-1, grain yield plant-1, and harvest index. Studies on the relationships between various traits divulged that the number of productive tillers and harvest index had a positive, strong link and a direct effect with grain yield plant-1. These findings support the application of genetic modification to increase seed yield in bread wheat.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"109 ","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CORRELATION AND PATH ANALYSES IN F4 SEGREGATING POPULATIONS OF BREAD WHEAT FOR GRAIN YIELD AND ITS ATTRIBUTES\",\"authors\":\"GP SHARADHI, H AVINASHE, N DUBEY, K DANALAKOTI, S GHOSH, S SACHAN, S CHOUDHARY\",\"doi\":\"10.54910/sabrao2023.55.5.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wheat breeders focus on enhancing the production potential of bread wheat by creating new varieties with acceptable genetic makeup to combat the pressure of rising human population consumption. Research to resolve this issue transpired during the Rabi of November 2021– April 2022 at the Lovely Professional University, Punjab, India. Developing the field trial used an augmented block design, 45 F4 segregating population genotypes, and five checks. Data on characteristics, such as days to 50% flowering, days to maturity, number of productive tillers, plant height, ear length, and weight, number of spikelets ear-1 and grains ear-1, 1000 grain weight, grain yield plant-1, biological yield, harvest index, and chlorophyll index underwent assessment. Highly significant variations between the genotypes for all the traits had the analysis of variance determining these, except 1000 grain weight and chlorophyll index in the treatment test and the test versus check. In this study, the harvest index, biological yield plant-1, and grain yield plant-1 are all higher for the phenotypic and genotypic coefficient of variances (PCV, GCV). The genetic advancement and heritability are highest for days to maturity, ear weight, number of grains ear-1, biological yield plant-1, grain yield plant-1, and harvest index. Studies on the relationships between various traits divulged that the number of productive tillers and harvest index had a positive, strong link and a direct effect with grain yield plant-1. These findings support the application of genetic modification to increase seed yield in bread wheat.\",\"PeriodicalId\":21328,\"journal\":{\"name\":\"Sabrao Journal of Breeding and Genetics\",\"volume\":\"109 \",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sabrao Journal of Breeding and Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54910/sabrao2023.55.5.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sabrao Journal of Breeding and Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54910/sabrao2023.55.5.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
CORRELATION AND PATH ANALYSES IN F4 SEGREGATING POPULATIONS OF BREAD WHEAT FOR GRAIN YIELD AND ITS ATTRIBUTES
Wheat breeders focus on enhancing the production potential of bread wheat by creating new varieties with acceptable genetic makeup to combat the pressure of rising human population consumption. Research to resolve this issue transpired during the Rabi of November 2021– April 2022 at the Lovely Professional University, Punjab, India. Developing the field trial used an augmented block design, 45 F4 segregating population genotypes, and five checks. Data on characteristics, such as days to 50% flowering, days to maturity, number of productive tillers, plant height, ear length, and weight, number of spikelets ear-1 and grains ear-1, 1000 grain weight, grain yield plant-1, biological yield, harvest index, and chlorophyll index underwent assessment. Highly significant variations between the genotypes for all the traits had the analysis of variance determining these, except 1000 grain weight and chlorophyll index in the treatment test and the test versus check. In this study, the harvest index, biological yield plant-1, and grain yield plant-1 are all higher for the phenotypic and genotypic coefficient of variances (PCV, GCV). The genetic advancement and heritability are highest for days to maturity, ear weight, number of grains ear-1, biological yield plant-1, grain yield plant-1, and harvest index. Studies on the relationships between various traits divulged that the number of productive tillers and harvest index had a positive, strong link and a direct effect with grain yield plant-1. These findings support the application of genetic modification to increase seed yield in bread wheat.
期刊介绍:
The SABRAO Journal of Breeding and Genetics is an international journal of plant breeding and genetics research and was first published in 1969. It is the official publication of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO).
Its objectives are to: promote the international exchange of research information on plant breeding and genetics, by describing new research findings, or ideas of a basic or practical nature; and be a medium for the exchange of ideas and news regarding members of the Society.
The Journal gives priority to articles that are of direct relevance to plant breeders and with emphasis on the Asian region. Invited for publication are research articles, short communications, methods, reviews, commentaries, and opinion articles. Scientific contributions are refereed and edited to international standards.
The journal publishes articles for SABRAO members mainly. The Journal preferred strongly that at least one author should be a current member of the Society. Non-members may also publish in the journal.