混合纳米流体在加热圆管内的摩擦因数和传热增强

IF 0.7 Q4 THERMODYNAMICS International Journal of Heat and Technology Pub Date : 2023-10-31 DOI:10.18280/ijht.410530
Firas Aziz Ali, Adnan M. Alsaffawi
{"title":"混合纳米流体在加热圆管内的摩擦因数和传热增强","authors":"Firas Aziz Ali, Adnan M. Alsaffawi","doi":"10.18280/ijht.410530","DOIUrl":null,"url":null,"abstract":"This work investigates the potential of hybrid nanoparticles suspended in pure water to enhance the thermal performance of heat exchangers at minimal weight fractions. A hybrid nanofluid consisting of 50% ZnO and 50% Al 2 O 3 nanoparticles dispersed in pure water at weight fractions of 0.1%, 0.3%, and 0.5% was prepared. An experimental rig, featuring a straight horizontal tube with a constant wall heat flux, was equipped with eight thermocouples positioned at the inlet, outlet, and along the tube's surface. The study focuses on the impact of the hybrid nanofluid on the friction factors and heat transfer coefficients within a Reynolds number range of 5000 to 20000. Observations indicate that the Nusselt number escalates with an increase in the Reynolds number through the horizontal tube, while the friction factor exhibits a converse relationship. The peak Nusselt number and friction factor were observed at a 5% mass fraction of the hybrid nanofluid. Specifically, enhancements in the Nusselt number were recorded at 9%, 11.8%, and 16.7% for the weight fractions of 0.1%, 0.3%, and 0.5% respectively. Additionally, the deviation in the friction factor was noted at 2.3%, 3.6%, and 4.1% in comparison to pure water. This study thus provides critical insights into the role of hybrid nanofluids in optimizing heat transfer in heat exchangers.","PeriodicalId":13995,"journal":{"name":"International Journal of Heat and Technology","volume":"141 ","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friction Factor and Heat Transfer Enhancement of Hybrid Nanofluids in a Heated Circular Tube\",\"authors\":\"Firas Aziz Ali, Adnan M. Alsaffawi\",\"doi\":\"10.18280/ijht.410530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the potential of hybrid nanoparticles suspended in pure water to enhance the thermal performance of heat exchangers at minimal weight fractions. A hybrid nanofluid consisting of 50% ZnO and 50% Al 2 O 3 nanoparticles dispersed in pure water at weight fractions of 0.1%, 0.3%, and 0.5% was prepared. An experimental rig, featuring a straight horizontal tube with a constant wall heat flux, was equipped with eight thermocouples positioned at the inlet, outlet, and along the tube's surface. The study focuses on the impact of the hybrid nanofluid on the friction factors and heat transfer coefficients within a Reynolds number range of 5000 to 20000. Observations indicate that the Nusselt number escalates with an increase in the Reynolds number through the horizontal tube, while the friction factor exhibits a converse relationship. The peak Nusselt number and friction factor were observed at a 5% mass fraction of the hybrid nanofluid. Specifically, enhancements in the Nusselt number were recorded at 9%, 11.8%, and 16.7% for the weight fractions of 0.1%, 0.3%, and 0.5% respectively. Additionally, the deviation in the friction factor was noted at 2.3%, 3.6%, and 4.1% in comparison to pure water. This study thus provides critical insights into the role of hybrid nanofluids in optimizing heat transfer in heat exchangers.\",\"PeriodicalId\":13995,\"journal\":{\"name\":\"International Journal of Heat and Technology\",\"volume\":\"141 \",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/ijht.410530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijht.410530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Friction Factor and Heat Transfer Enhancement of Hybrid Nanofluids in a Heated Circular Tube
This work investigates the potential of hybrid nanoparticles suspended in pure water to enhance the thermal performance of heat exchangers at minimal weight fractions. A hybrid nanofluid consisting of 50% ZnO and 50% Al 2 O 3 nanoparticles dispersed in pure water at weight fractions of 0.1%, 0.3%, and 0.5% was prepared. An experimental rig, featuring a straight horizontal tube with a constant wall heat flux, was equipped with eight thermocouples positioned at the inlet, outlet, and along the tube's surface. The study focuses on the impact of the hybrid nanofluid on the friction factors and heat transfer coefficients within a Reynolds number range of 5000 to 20000. Observations indicate that the Nusselt number escalates with an increase in the Reynolds number through the horizontal tube, while the friction factor exhibits a converse relationship. The peak Nusselt number and friction factor were observed at a 5% mass fraction of the hybrid nanofluid. Specifically, enhancements in the Nusselt number were recorded at 9%, 11.8%, and 16.7% for the weight fractions of 0.1%, 0.3%, and 0.5% respectively. Additionally, the deviation in the friction factor was noted at 2.3%, 3.6%, and 4.1% in comparison to pure water. This study thus provides critical insights into the role of hybrid nanofluids in optimizing heat transfer in heat exchangers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
22.20%
发文量
144
期刊介绍: The IJHT covers all kinds of subjects related to heat and technology, including but not limited to turbulence, combustion, cryogenics, porous media, multiphase flow, radiative transfer, heat and mass transfer, micro- and nanoscale systems, and thermophysical property measurement. The editorial board encourages the authors from all countries to submit papers on the relevant issues, especially those aimed at the practitioner as much as the academic. The papers should further our understanding of the said subjects, and make a significant original contribution to knowledge. The IJHT welcomes original research papers, technical notes and review articles on the following disciplines: Heat transfer Fluid dynamics Thermodynamics Turbulence Combustion Cryogenics Porous media Multiphase flow Radiative transfer Heat and mass transfer Micro- and nanoscale systems Thermophysical property measurement.
期刊最新文献
Investigating Thermal Deflection in a Finite Hollow Cylinder Using Quasi-Static Approach and Space-Time Fractional Heat Conduction Equation Enhancing Latent Thermal Battery Performance: A Study of Multistage Organic Phase Change Material Systems Optimization of Heat Transfer in Solar-Powered Biodiesel Reactors Using Alumina Nanofluids: A Combined Experimental and Numerical Study Capillary Tube Length and Heat Transfer Dynamics in Air Conditioners: A Comparative Analysis of R-12 and Its Alternatives Modeling of Electricity Generation Using Smart Piezoelectric-Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1