高粱秸秆和酒厂固体废物共消化:氧化铁纳米颗粒用于沼气产量优化的应用

Carrelle G. Ossinga, Vincent I. Okudoh, Mahabubur R. Chowdhury
{"title":"高粱秸秆和酒厂固体废物共消化:氧化铁纳米颗粒用于沼气产量优化的应用","authors":"Carrelle G. Ossinga, Vincent I. Okudoh, Mahabubur R. Chowdhury","doi":"10.1007/s43832-023-00047-9","DOIUrl":null,"url":null,"abstract":"Abstract One approach to addressing energy security issues is to produce renewable and sustainable bioenergy using abundant waste resources through anaerobic co-digestion (AcoD). However, the lignocellulosic nature of these biomass resources makes them recalcitrant, and pretreatment is required to make them more amenable to conversion. Iron oxide nanoparticles (ION) have been shown to increase methane yield significantly when added to biomass resources. This study aimed to investigate the effect of ION application on Sorghum stover (SS) and Winery solid waste (WSW) under mesophilic conditions. Hydrothermal synthesis was used to obtain Fe 3 O 4 nanoparticles. Biomethane potential (BMP) tests were carried out in semi-continuous batch reactors with and without ION singly and combined SS: WSW (1:1) during a 30-day retention period. The results showed that the ION application on WSW delivered a higher biogas yield (380 mL), indicating an increase of 162% in biogas production compared to the sample without ION (145 mL). In addition, CH4 generation went from 30 to 114 mLCH4, indicating a 280% increase. However, adding ION to SS inhibited CH4 production. The study found that ION addition significantly improved biogas yield, especially with WSW, where the increase was more than triple, of interest to bioenergy and waste management practitioners. Graphic Abstract","PeriodicalId":29971,"journal":{"name":"Discover Water","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sorghum stover and winery solid wastes co-digestion: application of iron oxide nanoparticles for biogas yield optimisation\",\"authors\":\"Carrelle G. Ossinga, Vincent I. Okudoh, Mahabubur R. Chowdhury\",\"doi\":\"10.1007/s43832-023-00047-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One approach to addressing energy security issues is to produce renewable and sustainable bioenergy using abundant waste resources through anaerobic co-digestion (AcoD). However, the lignocellulosic nature of these biomass resources makes them recalcitrant, and pretreatment is required to make them more amenable to conversion. Iron oxide nanoparticles (ION) have been shown to increase methane yield significantly when added to biomass resources. This study aimed to investigate the effect of ION application on Sorghum stover (SS) and Winery solid waste (WSW) under mesophilic conditions. Hydrothermal synthesis was used to obtain Fe 3 O 4 nanoparticles. Biomethane potential (BMP) tests were carried out in semi-continuous batch reactors with and without ION singly and combined SS: WSW (1:1) during a 30-day retention period. The results showed that the ION application on WSW delivered a higher biogas yield (380 mL), indicating an increase of 162% in biogas production compared to the sample without ION (145 mL). In addition, CH4 generation went from 30 to 114 mLCH4, indicating a 280% increase. However, adding ION to SS inhibited CH4 production. The study found that ION addition significantly improved biogas yield, especially with WSW, where the increase was more than triple, of interest to bioenergy and waste management practitioners. Graphic Abstract\",\"PeriodicalId\":29971,\"journal\":{\"name\":\"Discover Water\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43832-023-00047-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43832-023-00047-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用丰富的废弃物资源,通过厌氧共消化(AcoD)生产可再生和可持续的生物能源是解决能源安全问题的途径之一。然而,这些生物质资源的木质纤维素性质使它们具有顽固性,并且需要预处理以使它们更易于转化。氧化铁纳米颗粒(ION)添加到生物质资源中可以显著提高甲烷产量。本试验旨在研究中温条件下离子对高粱秸秆(SS)和酒庄固体废弃物(WSW)的处理效果。采用水热合成法制备了纳米fe3o4。生物甲烷势(BMP)在半连续间歇式反应器中进行,在30天的保留期内,分别有和没有离子,以及混合SS: WSW(1:1)。结果表明,离子在WSW上的应用产生了更高的沼气产量(380 mL),与没有离子的样品(145 mL)相比,沼气产量增加了162%。此外,CH4代从30 mLCH4增加到114 mLCH4,增加了280%。然而,向SS中添加离子抑制了CH4的产生。研究发现,离子的添加显著提高了沼气产量,尤其是WSW,其产量增加了三倍以上,这引起了生物能源和废物管理从业者的兴趣。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sorghum stover and winery solid wastes co-digestion: application of iron oxide nanoparticles for biogas yield optimisation
Abstract One approach to addressing energy security issues is to produce renewable and sustainable bioenergy using abundant waste resources through anaerobic co-digestion (AcoD). However, the lignocellulosic nature of these biomass resources makes them recalcitrant, and pretreatment is required to make them more amenable to conversion. Iron oxide nanoparticles (ION) have been shown to increase methane yield significantly when added to biomass resources. This study aimed to investigate the effect of ION application on Sorghum stover (SS) and Winery solid waste (WSW) under mesophilic conditions. Hydrothermal synthesis was used to obtain Fe 3 O 4 nanoparticles. Biomethane potential (BMP) tests were carried out in semi-continuous batch reactors with and without ION singly and combined SS: WSW (1:1) during a 30-day retention period. The results showed that the ION application on WSW delivered a higher biogas yield (380 mL), indicating an increase of 162% in biogas production compared to the sample without ION (145 mL). In addition, CH4 generation went from 30 to 114 mLCH4, indicating a 280% increase. However, adding ION to SS inhibited CH4 production. The study found that ION addition significantly improved biogas yield, especially with WSW, where the increase was more than triple, of interest to bioenergy and waste management practitioners. Graphic Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discover Water
Discover Water water research-
自引率
0.00%
发文量
13
审稿时长
23 days
期刊介绍: Discover Water is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is an open access, community-focussed journal publishing research from across all fields relevant to water research. Discover Water is a broad, open access journal publishing research from across all fields relevant to the science and technology of water research and management. Discover Water covers not only research on water as a resource, for example for drinking, agriculture and sanitation, but also the impact of society on water, such as the effect of human activities on water availability and pollution. As such it looks at the overall role of water at a global level, including physical, chemical, biological, and ecological processes, and social, policy, and public health implications. It is also intended that articles published in Discover Water may help to support and accelerate United Nations Sustainable Development Goal 6: ‘Clean water and sanitation’.
期刊最新文献
Optimizing water supply systems in developing regions: a sustainable approach using ESCO model system for urban water supply in Dehradun, India Minimum environmental flow assessment: a fuzzy TOPSIS decision-making system for selecting the best approach Investigation and detection of multiple antibiotic-resistant pathogenic bacteria in municipal wastewater of Dhaka city Drought trend and its association with land surface temperature (LST) over homogeneous drought regions of India (2001–2019) Geospatial insights into groundwater contamination from urban and industrial effluents in Faisalabad
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1