{"title":"二嵌段共聚物模型的改进跨跃时间推进法数值逼近","authors":"Lizhen Chen, Ying Ma, Bo Ren, Guohui Zhang","doi":"10.3390/computation11110215","DOIUrl":null,"url":null,"abstract":"An efficient modified leapfrog time-marching scheme for the diblock copolymer model is investigated in this paper. The proposed scheme offers three main advantages. Firstly, it is linear in time, requiring only a linear algebra system to be solved at each time-marching step. This leads to a significant reduction in computational cost compared to other methods. Secondly, the scheme ensures unconditional energy stability, allowing for a large time step to be used without compromising solution stability. Thirdly, the existence and uniqueness of the numerical solution at each time step is rigorously proven, ensuring the reliability and accuracy of the method. A numerical example is also included to demonstrate and validate the proposed algorithm, showing its accuracy and efficiency in practical applications.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"6 S1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Approximations of Diblock Copolymer Model Using a Modified Leapfrog Time-Marching Scheme\",\"authors\":\"Lizhen Chen, Ying Ma, Bo Ren, Guohui Zhang\",\"doi\":\"10.3390/computation11110215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient modified leapfrog time-marching scheme for the diblock copolymer model is investigated in this paper. The proposed scheme offers three main advantages. Firstly, it is linear in time, requiring only a linear algebra system to be solved at each time-marching step. This leads to a significant reduction in computational cost compared to other methods. Secondly, the scheme ensures unconditional energy stability, allowing for a large time step to be used without compromising solution stability. Thirdly, the existence and uniqueness of the numerical solution at each time step is rigorously proven, ensuring the reliability and accuracy of the method. A numerical example is also included to demonstrate and validate the proposed algorithm, showing its accuracy and efficiency in practical applications.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"6 S1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11110215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11110215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Numerical Approximations of Diblock Copolymer Model Using a Modified Leapfrog Time-Marching Scheme
An efficient modified leapfrog time-marching scheme for the diblock copolymer model is investigated in this paper. The proposed scheme offers three main advantages. Firstly, it is linear in time, requiring only a linear algebra system to be solved at each time-marching step. This leads to a significant reduction in computational cost compared to other methods. Secondly, the scheme ensures unconditional energy stability, allowing for a large time step to be used without compromising solution stability. Thirdly, the existence and uniqueness of the numerical solution at each time step is rigorously proven, ensuring the reliability and accuracy of the method. A numerical example is also included to demonstrate and validate the proposed algorithm, showing its accuracy and efficiency in practical applications.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.