人口研究中序列决策的强化学习

Q1 Mathematics Quality & Quantity Pub Date : 2023-11-02 DOI:10.1007/s11135-023-01755-z
Nina Deliu
{"title":"人口研究中序列决策的强化学习","authors":"Nina Deliu","doi":"10.1007/s11135-023-01755-z","DOIUrl":null,"url":null,"abstract":"Abstract Reinforcement learning (RL) algorithms have been long recognized as powerful tools for optimal sequential decision making. The framework is concerned with a decision maker, the agent, that learns how to behave in an unknown environment by making decisions and seeing their associated outcome. The goal of the RL agent is to infer, through repeated experience, an optimal decision-making policy, i.e., a sequence of action rules that would lead to the highest, typically long-term, expected utility. Today, a wide range of domains, from economics to education and healthcare, have embraced the use of RL to address specific problems. To illustrate, we used an RL-based algorithm to design a text-messaging system that delivers personalized real-time behavioural recommendations to promote physical activity and manage depression. Motivated by the recent call of the UNECE for government-wide actions to adapt to population ageing, in this work, we argue that the RL framework may provide a set of compelling strategies for supporting population research and informing population policies. After introducing the RL framework, we discuss its potential in three population-study applications: international migration, public health, and fertility.","PeriodicalId":49649,"journal":{"name":"Quality & Quantity","volume":"11 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning for sequential decision making in population research\",\"authors\":\"Nina Deliu\",\"doi\":\"10.1007/s11135-023-01755-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Reinforcement learning (RL) algorithms have been long recognized as powerful tools for optimal sequential decision making. The framework is concerned with a decision maker, the agent, that learns how to behave in an unknown environment by making decisions and seeing their associated outcome. The goal of the RL agent is to infer, through repeated experience, an optimal decision-making policy, i.e., a sequence of action rules that would lead to the highest, typically long-term, expected utility. Today, a wide range of domains, from economics to education and healthcare, have embraced the use of RL to address specific problems. To illustrate, we used an RL-based algorithm to design a text-messaging system that delivers personalized real-time behavioural recommendations to promote physical activity and manage depression. Motivated by the recent call of the UNECE for government-wide actions to adapt to population ageing, in this work, we argue that the RL framework may provide a set of compelling strategies for supporting population research and informing population policies. After introducing the RL framework, we discuss its potential in three population-study applications: international migration, public health, and fertility.\",\"PeriodicalId\":49649,\"journal\":{\"name\":\"Quality & Quantity\",\"volume\":\"11 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality & Quantity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11135-023-01755-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality & Quantity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11135-023-01755-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

强化学习(RL)算法一直被认为是最优序列决策的有力工具。该框架关注的是一个决策者,即代理,它通过做出决策并看到相关结果来学习如何在未知环境中表现。RL代理的目标是通过重复的经验推断出最优的决策策略,即一系列行动规则,这些规则将导致最高的、通常是长期的预期效用。今天,从经济学到教育和医疗保健的广泛领域都采用了RL来解决具体问题。为了说明这一点,我们使用了一种基于强化学习的算法来设计一个短信系统,该系统可以提供个性化的实时行为建议,以促进身体活动和管理抑郁症。受联合国欧洲经济委员会最近呼吁政府采取行动适应人口老龄化的推动,在这项工作中,我们认为RL框架可以为支持人口研究和为人口政策提供一套令人信服的战略。在介绍RL框架之后,我们讨论了它在三个人口研究应用中的潜力:国际移民、公共卫生和生育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning for sequential decision making in population research
Abstract Reinforcement learning (RL) algorithms have been long recognized as powerful tools for optimal sequential decision making. The framework is concerned with a decision maker, the agent, that learns how to behave in an unknown environment by making decisions and seeing their associated outcome. The goal of the RL agent is to infer, through repeated experience, an optimal decision-making policy, i.e., a sequence of action rules that would lead to the highest, typically long-term, expected utility. Today, a wide range of domains, from economics to education and healthcare, have embraced the use of RL to address specific problems. To illustrate, we used an RL-based algorithm to design a text-messaging system that delivers personalized real-time behavioural recommendations to promote physical activity and manage depression. Motivated by the recent call of the UNECE for government-wide actions to adapt to population ageing, in this work, we argue that the RL framework may provide a set of compelling strategies for supporting population research and informing population policies. After introducing the RL framework, we discuss its potential in three population-study applications: international migration, public health, and fertility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quality & Quantity
Quality & Quantity 管理科学-统计学与概率论
CiteScore
4.60
自引率
0.00%
发文量
276
审稿时长
4-8 weeks
期刊介绍: Quality and Quantity constitutes a point of reference for European and non-European scholars to discuss instruments of methodology for more rigorous scientific results in the social sciences. In the era of biggish data, the journal also provides a publication venue for data scientists who are interested in proposing a new indicator to measure the latent aspects of social, cultural, and political events. Rather than leaning towards one specific methodological school, the journal publishes papers on a mixed method of quantitative and qualitative data. Furthermore, the journal’s key aim is to tackle some methodological pluralism across research cultures. In this context, the journal is open to papers addressing some general logic of empirical research and analysis of the validity and verification of social laws. Thus The journal accepts papers on science metrics and publication ethics and, their related issues affecting methodological practices among researchers. Quality and Quantity is an interdisciplinary journal which systematically correlates disciplines such as data and information sciences with the other humanities and social sciences. The journal extends discussion of interesting contributions in methodology to scholars worldwide, to promote the scientific development of social research.
期刊最新文献
Biodegradable electronics: a two-decade bibliometric analysis Developing the halal-sufficiency scale: a preliminary insight Measuring income inequality via percentile relativities. Research design: qualitative, quantitative, and mixed methods approaches / sixth edition Using biograms to promote life course research. An example of theoretical case configuration relating to paths of social exclusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1