法匹拉韦和伊维菌素对SARS-CoV-2表现出体外协同抗病毒活性

IF 1.1 4区 医学 Q4 VIROLOGY Acta virologica Pub Date : 2023-11-02 DOI:10.3389/av.2023.12265
Kunlakanya Jitobaom, Chompunuch Boonarkart, Suwimon Manopwisedjaroen, Nuntaya Punyadee, Suparerk Borwornpinyo, Arunee Thitithanyanont, Panisadee Avirutnan, Prasert Auewarakul
{"title":"法匹拉韦和伊维菌素对SARS-CoV-2表现出体外协同抗病毒活性","authors":"Kunlakanya Jitobaom, Chompunuch Boonarkart, Suwimon Manopwisedjaroen, Nuntaya Punyadee, Suparerk Borwornpinyo, Arunee Thitithanyanont, Panisadee Avirutnan, Prasert Auewarakul","doi":"10.3389/av.2023.12265","DOIUrl":null,"url":null,"abstract":"Despite the urgent need for effective antivirals against SARS-CoV-2 to mitigate the catastrophic impact of the COVID-19 pandemic, favipiravir and ivermectin are among the common repurposed drugs that have been provisionally used in some countries. There have been clinical trials with mixed results, and therefore, it is still inconclusive whether they are effective or should be dismissed. It is plausible that the lack of clear-cut clinical benefits was due to the finding of only marginal levels of in vivo antiviral activity. An obvious way to improve the activity of antivirals is to use them in synergistic combinations. The in vitro antiviral activity of the combinations of favipiravir, ivermectin, niclosamide, and chloroquine against SARS-CoV-2 was assessed in Vero E6 cells and the lung epithelial cell, Calu-3. Here we show that favipiravir and ivermectin had synergistic effects against SARS-CoV-2 in Vero E6 cells. In addition, we found that favipiravir had an additive effect with niclosamide, another repurposed anti-parasitic drug with anti-SARS-CoV-2 activity. However, the anti-SARS-CoV-2 activity of favipiravir was drastically reduced when evaluated in Calu-3 cells. This suggested that this cell type might not be able to metabolize favipiravir into its active form and that this deficiency in some cell types may affect the in vivo efficacy of this drug. Favipiravir and ivermectin show the best synergistic effect. This combination is being tested in a randomized controlled clinical trial (NCT05155527).","PeriodicalId":7205,"journal":{"name":"Acta virologica","volume":"29 6","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Favipiravir and ivermectin show in vitro synergistic antiviral activity against SARS-CoV-2\",\"authors\":\"Kunlakanya Jitobaom, Chompunuch Boonarkart, Suwimon Manopwisedjaroen, Nuntaya Punyadee, Suparerk Borwornpinyo, Arunee Thitithanyanont, Panisadee Avirutnan, Prasert Auewarakul\",\"doi\":\"10.3389/av.2023.12265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the urgent need for effective antivirals against SARS-CoV-2 to mitigate the catastrophic impact of the COVID-19 pandemic, favipiravir and ivermectin are among the common repurposed drugs that have been provisionally used in some countries. There have been clinical trials with mixed results, and therefore, it is still inconclusive whether they are effective or should be dismissed. It is plausible that the lack of clear-cut clinical benefits was due to the finding of only marginal levels of in vivo antiviral activity. An obvious way to improve the activity of antivirals is to use them in synergistic combinations. The in vitro antiviral activity of the combinations of favipiravir, ivermectin, niclosamide, and chloroquine against SARS-CoV-2 was assessed in Vero E6 cells and the lung epithelial cell, Calu-3. Here we show that favipiravir and ivermectin had synergistic effects against SARS-CoV-2 in Vero E6 cells. In addition, we found that favipiravir had an additive effect with niclosamide, another repurposed anti-parasitic drug with anti-SARS-CoV-2 activity. However, the anti-SARS-CoV-2 activity of favipiravir was drastically reduced when evaluated in Calu-3 cells. This suggested that this cell type might not be able to metabolize favipiravir into its active form and that this deficiency in some cell types may affect the in vivo efficacy of this drug. Favipiravir and ivermectin show the best synergistic effect. This combination is being tested in a randomized controlled clinical trial (NCT05155527).\",\"PeriodicalId\":7205,\"journal\":{\"name\":\"Acta virologica\",\"volume\":\"29 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta virologica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/av.2023.12265\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta virologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/av.2023.12265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管迫切需要针对SARS-CoV-2的有效抗病毒药物,以减轻COVID-19大流行的灾难性影响,但法匹拉韦和伊维菌素是一些国家暂时使用的常见重新用途药物。临床试验的结果好坏参半,因此,它们是否有效或是否应该被驳回仍然没有定论。似乎缺乏明确的临床益处是由于体内抗病毒活性只有边际水平的发现。提高抗病毒药物活性的一个明显方法是将它们协同联合使用。在Vero E6细胞和肺上皮细胞Calu-3中评估了favipiravir、伊维菌素、氯胺酰胺和氯喹联合使用对SARS-CoV-2的体外抗病毒活性。本研究表明,favipiravir和伊维菌素在Vero E6细胞中对SARS-CoV-2具有协同作用。此外,我们发现favipiravir与另一种具有抗sars - cov -2活性的改用途抗寄生虫药物niclosamide具有加性作用。然而,当在Calu-3细胞中进行评估时,favipiravir的抗sars - cov -2活性急剧降低。这表明这种细胞类型可能无法将favipiravir代谢成其活性形式,并且某些细胞类型的这种缺陷可能会影响该药物的体内功效。法匹拉韦与伊维菌素的协同效果最好。该组合正在一项随机对照临床试验(NCT05155527)中进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Favipiravir and ivermectin show in vitro synergistic antiviral activity against SARS-CoV-2
Despite the urgent need for effective antivirals against SARS-CoV-2 to mitigate the catastrophic impact of the COVID-19 pandemic, favipiravir and ivermectin are among the common repurposed drugs that have been provisionally used in some countries. There have been clinical trials with mixed results, and therefore, it is still inconclusive whether they are effective or should be dismissed. It is plausible that the lack of clear-cut clinical benefits was due to the finding of only marginal levels of in vivo antiviral activity. An obvious way to improve the activity of antivirals is to use them in synergistic combinations. The in vitro antiviral activity of the combinations of favipiravir, ivermectin, niclosamide, and chloroquine against SARS-CoV-2 was assessed in Vero E6 cells and the lung epithelial cell, Calu-3. Here we show that favipiravir and ivermectin had synergistic effects against SARS-CoV-2 in Vero E6 cells. In addition, we found that favipiravir had an additive effect with niclosamide, another repurposed anti-parasitic drug with anti-SARS-CoV-2 activity. However, the anti-SARS-CoV-2 activity of favipiravir was drastically reduced when evaluated in Calu-3 cells. This suggested that this cell type might not be able to metabolize favipiravir into its active form and that this deficiency in some cell types may affect the in vivo efficacy of this drug. Favipiravir and ivermectin show the best synergistic effect. This combination is being tested in a randomized controlled clinical trial (NCT05155527).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta virologica
Acta virologica 医学-病毒学
CiteScore
3.10
自引率
11.80%
发文量
43
审稿时长
>12 weeks
期刊介绍: Acta virologica is an international journal of predominantly molecular and cellular virology. Acta virologica aims to publish papers reporting original results of fundamental and applied research mainly on human, animal and plant viruses at cellular and molecular level. As a matter of tradition, also rickettsiae are included. Areas of interest are virus structure and morphology, molecular biology of virus-cell interactions, molecular genetics of viruses, pathogenesis of viral diseases, viral immunology, vaccines, antiviral drugs and viral diagnostics.
期刊最新文献
The interaction of influenza A virus RNA polymerase PA subunit with the human β-actin protein Construction of recombinant adenovirus-5 vector to prevent replication-competent adenovirus occurrence Virtual screening and molecular dynamics simulation to identify potential SARS-CoV-2 3CLpro inhibitors from a natural product compounds library The TRK-fused gene negatively regulates interferon signaling by inhibiting TBK1 phosphorylation during PPMV-1 infection Favipiravir and ivermectin show in vitro synergistic antiviral activity against SARS-CoV-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1