Kokulo K. Lawuobahsumo, Bernardina Algieri, Arturo Leccadito
{"title":"预测加密货币回报:宏观经济和金融变量是否会改善尾部预期预测?","authors":"Kokulo K. Lawuobahsumo, Bernardina Algieri, Arturo Leccadito","doi":"10.1007/s11135-023-01761-1","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to jointly predict conditional quantiles and tail expectations for the returns of the most popular cryptocurrencies (Bitcoin, Ethereum, Ripple, Dogecoin and Litecoin) using financial and macroeconomic indicators as explanatory variables. We adopt a Monotone Composite Quantile Regression Neural Network (MCQRNN) model to make one- and five-steps-ahead predictions of Value-at-Risk (VaR) and Expected Shortfall (ES) based on a rolling window and compare the performance of our model against the Historical simulation and the standard ARMA(1,1)-GARCH(1,1) model used as benchmarks. The superior set of models is then chosen by backtesting VaR and ES using a Model Confidence Set procedure. Our results show that the MCQRNN performs better than both benchmark models for jointly predicting VaR and ES when considering daily data. Models with the implied volatility index, treasury yield spread and inflation expectations sharpen the extreme return predictions. The results are consistent for the two risk measures at the 1% and 5% level both, in the case of a long and short position and for all cryptocurrencies.","PeriodicalId":49649,"journal":{"name":"Quality & Quantity","volume":"16 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting cryptocurrencies returns: Do macroeconomic and financial variables improve tail expectation predictions?\",\"authors\":\"Kokulo K. Lawuobahsumo, Bernardina Algieri, Arturo Leccadito\",\"doi\":\"10.1007/s11135-023-01761-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aims to jointly predict conditional quantiles and tail expectations for the returns of the most popular cryptocurrencies (Bitcoin, Ethereum, Ripple, Dogecoin and Litecoin) using financial and macroeconomic indicators as explanatory variables. We adopt a Monotone Composite Quantile Regression Neural Network (MCQRNN) model to make one- and five-steps-ahead predictions of Value-at-Risk (VaR) and Expected Shortfall (ES) based on a rolling window and compare the performance of our model against the Historical simulation and the standard ARMA(1,1)-GARCH(1,1) model used as benchmarks. The superior set of models is then chosen by backtesting VaR and ES using a Model Confidence Set procedure. Our results show that the MCQRNN performs better than both benchmark models for jointly predicting VaR and ES when considering daily data. Models with the implied volatility index, treasury yield spread and inflation expectations sharpen the extreme return predictions. The results are consistent for the two risk measures at the 1% and 5% level both, in the case of a long and short position and for all cryptocurrencies.\",\"PeriodicalId\":49649,\"journal\":{\"name\":\"Quality & Quantity\",\"volume\":\"16 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality & Quantity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11135-023-01761-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality & Quantity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11135-023-01761-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Forecasting cryptocurrencies returns: Do macroeconomic and financial variables improve tail expectation predictions?
Abstract This study aims to jointly predict conditional quantiles and tail expectations for the returns of the most popular cryptocurrencies (Bitcoin, Ethereum, Ripple, Dogecoin and Litecoin) using financial and macroeconomic indicators as explanatory variables. We adopt a Monotone Composite Quantile Regression Neural Network (MCQRNN) model to make one- and five-steps-ahead predictions of Value-at-Risk (VaR) and Expected Shortfall (ES) based on a rolling window and compare the performance of our model against the Historical simulation and the standard ARMA(1,1)-GARCH(1,1) model used as benchmarks. The superior set of models is then chosen by backtesting VaR and ES using a Model Confidence Set procedure. Our results show that the MCQRNN performs better than both benchmark models for jointly predicting VaR and ES when considering daily data. Models with the implied volatility index, treasury yield spread and inflation expectations sharpen the extreme return predictions. The results are consistent for the two risk measures at the 1% and 5% level both, in the case of a long and short position and for all cryptocurrencies.
期刊介绍:
Quality and Quantity constitutes a point of reference for European and non-European scholars to discuss instruments of methodology for more rigorous scientific results in the social sciences. In the era of biggish data, the journal also provides a publication venue for data scientists who are interested in proposing a new indicator to measure the latent aspects of social, cultural, and political events. Rather than leaning towards one specific methodological school, the journal publishes papers on a mixed method of quantitative and qualitative data. Furthermore, the journal’s key aim is to tackle some methodological pluralism across research cultures. In this context, the journal is open to papers addressing some general logic of empirical research and analysis of the validity and verification of social laws. Thus The journal accepts papers on science metrics and publication ethics and, their related issues affecting methodological practices among researchers.
Quality and Quantity is an interdisciplinary journal which systematically correlates disciplines such as data and information sciences with the other humanities and social sciences. The journal extends discussion of interesting contributions in methodology to scholars worldwide, to promote the scientific development of social research.