片状锌粉在环氧富锌涂料中的降锌研究

IF 2.3 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Anti-corrosion Methods and Materials Pub Date : 2023-09-11 DOI:10.1108/acmm-07-2023-2861
Yang Liu, Jialing Wang, Huayang Cai, Yawei Shao, Zhengyi Xu, Yanqiu Wang, Junyi Wang
{"title":"片状锌粉在环氧富锌涂料中的降锌研究","authors":"Yang Liu, Jialing Wang, Huayang Cai, Yawei Shao, Zhengyi Xu, Yanqiu Wang, Junyi Wang","doi":"10.1108/acmm-07-2023-2861","DOIUrl":null,"url":null,"abstract":"Purpose Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc powder instead of the commonly used spherical zinc powder to reduce the zinc powder content. Design/methodology/approach In this paper, the authors have prepared an anticorrosive zinc-rich coating using a flake zinc powder instead of the conventional spherical zinc powder. The optimal dispersion of scaly zinc powder in zinc-rich coatings has been explored by looking at the surface and cross-sectional morphology and studying the cathodic protection time of the coating. Findings The final epoxy zinc-rich coating with 35 Wt.% flake zinc powder content was prepared using sand-milling dispersions. It has a similar cathodic protection time and salt spray resistance as the 60 Wt.% spherical zinc-rich coating, with a higher low-frequency impedance modulus value. Originality/value This study uses flake zinc powder instead of the traditional spherical zinc powder. This reduces the amount of zinc powder in the coating and improves the corrosion resistance of the coating.","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"68 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies of zinc content reduction using flake zinc powder in epoxy zinc-rich coatings\",\"authors\":\"Yang Liu, Jialing Wang, Huayang Cai, Yawei Shao, Zhengyi Xu, Yanqiu Wang, Junyi Wang\",\"doi\":\"10.1108/acmm-07-2023-2861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc powder instead of the commonly used spherical zinc powder to reduce the zinc powder content. Design/methodology/approach In this paper, the authors have prepared an anticorrosive zinc-rich coating using a flake zinc powder instead of the conventional spherical zinc powder. The optimal dispersion of scaly zinc powder in zinc-rich coatings has been explored by looking at the surface and cross-sectional morphology and studying the cathodic protection time of the coating. Findings The final epoxy zinc-rich coating with 35 Wt.% flake zinc powder content was prepared using sand-milling dispersions. It has a similar cathodic protection time and salt spray resistance as the 60 Wt.% spherical zinc-rich coating, with a higher low-frequency impedance modulus value. Originality/value This study uses flake zinc powder instead of the traditional spherical zinc powder. This reduces the amount of zinc powder in the coating and improves the corrosion resistance of the coating.\",\"PeriodicalId\":8217,\"journal\":{\"name\":\"Anti-corrosion Methods and Materials\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-corrosion Methods and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/acmm-07-2023-2861\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/acmm-07-2023-2861","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

目的环氧富锌涂料由于对钢表面具有持久的阴极保护作用,在恶劣环境中得到广泛应用。本文的目的是用片状锌粉代替常用的球形锌粉,以降低锌粉含量。设计/方法/方法本文采用片状锌粉代替传统的球形锌粉制备了一种防腐富锌涂料。通过对富锌涂层表面形貌和横截面形貌的观察,以及镀层阴极保护时间的研究,探索了鳞状锌粉在富锌涂层中的最佳分散方式。结果采用砂磨分散体制备了片状锌含量为35 Wt.%的环氧富锌涂料。具有与60wt .%球形富锌涂层相近的阴极保护时间和耐盐雾性能,具有较高的低频阻抗模量值。本研究采用片状锌粉代替传统的球形锌粉。这样可以减少涂层中锌粉的含量,提高涂层的耐腐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studies of zinc content reduction using flake zinc powder in epoxy zinc-rich coatings
Purpose Epoxy zinc-rich coatings are widely used in harsh environments because of the long-lasting cathodic protection of steel surfaces. The purpose of this paper is to use flake zinc powder instead of the commonly used spherical zinc powder to reduce the zinc powder content. Design/methodology/approach In this paper, the authors have prepared an anticorrosive zinc-rich coating using a flake zinc powder instead of the conventional spherical zinc powder. The optimal dispersion of scaly zinc powder in zinc-rich coatings has been explored by looking at the surface and cross-sectional morphology and studying the cathodic protection time of the coating. Findings The final epoxy zinc-rich coating with 35 Wt.% flake zinc powder content was prepared using sand-milling dispersions. It has a similar cathodic protection time and salt spray resistance as the 60 Wt.% spherical zinc-rich coating, with a higher low-frequency impedance modulus value. Originality/value This study uses flake zinc powder instead of the traditional spherical zinc powder. This reduces the amount of zinc powder in the coating and improves the corrosion resistance of the coating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anti-corrosion Methods and Materials
Anti-corrosion Methods and Materials 工程技术-冶金工程
CiteScore
2.80
自引率
16.70%
发文量
61
审稿时长
13.5 months
期刊介绍: Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world. Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties. • New methods, materials and software • New developments in research and industry • Stainless steels • Protection of structural steelwork • Industry update, conference news, dates and events • Environmental issues • Health & safety, including EC regulations • Corrosion monitoring and plant health assessment • The latest equipment and processes • Corrosion cost and corrosion risk management.
期刊最新文献
Effect of graphene on mechanical and anti-corrosion properties of TiO2-SiO2 sol-gel coating Enhancing the corrosion resistance of a novel bio-compatible Mg-1Zn-0.45Ca alloy in simulated body fluid by a phosphate treated PEO coating A case study: anti-corrosion performances of plasma sprayed AT13 coatings on CrZrCu thin wall cylinder with adjusted parameters for controlling deformation A highly efficient method for characterizing the kinetics of hydrogen evolution reaction Research of two kinds of PANI@semiconductor based photocathodic coating corrosion protection effect and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1