{"title":"基于先验知识的几何变形模型脑结构多目标三维分割","authors":"Mohamed Baghdadi, Nacéra Benamrane, Mounir Boukadoum, Lakhdar Sais","doi":"10.1080/13682199.2023.2256504","DOIUrl":null,"url":null,"abstract":"Brain structure segmentation in 3D Magnetic Resonance Images is crucial for understanding neurodegenerative disorders. Manual segmentation is error-prone, necessitating robust automated techniques. In this paper, we introduce a novel and robust approach for the simultaneous segmentation of multiple brain structures in MRI images. Our method involves the concurrent evolution of 3D surfaces toward predefined anatomical targets, employing an efficient multi-object generalized fast marching method (MOGFMM) for simultaneous object detection. Additionally, we propose an effective evolution function that integrates prior knowledge from anatomical and probabilistic atlases, as well as spatial relationships among the segmented structures. Each deformable surface corresponds to a specific structure. To validate our approach, we conducted experiments on a dataset of real brain images (IBSR) and compared the results with several state-of-the-art methods. The obtained results were promising, demonstrating the effectiveness and superiority of our developed method.","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-object 3D segmentation of brain structures using a geometric deformable model with a priori knowledge\",\"authors\":\"Mohamed Baghdadi, Nacéra Benamrane, Mounir Boukadoum, Lakhdar Sais\",\"doi\":\"10.1080/13682199.2023.2256504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain structure segmentation in 3D Magnetic Resonance Images is crucial for understanding neurodegenerative disorders. Manual segmentation is error-prone, necessitating robust automated techniques. In this paper, we introduce a novel and robust approach for the simultaneous segmentation of multiple brain structures in MRI images. Our method involves the concurrent evolution of 3D surfaces toward predefined anatomical targets, employing an efficient multi-object generalized fast marching method (MOGFMM) for simultaneous object detection. Additionally, we propose an effective evolution function that integrates prior knowledge from anatomical and probabilistic atlases, as well as spatial relationships among the segmented structures. Each deformable surface corresponds to a specific structure. To validate our approach, we conducted experiments on a dataset of real brain images (IBSR) and compared the results with several state-of-the-art methods. The obtained results were promising, demonstrating the effectiveness and superiority of our developed method.\",\"PeriodicalId\":22456,\"journal\":{\"name\":\"The Imaging Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Imaging Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13682199.2023.2256504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Imaging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13682199.2023.2256504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-object 3D segmentation of brain structures using a geometric deformable model with a priori knowledge
Brain structure segmentation in 3D Magnetic Resonance Images is crucial for understanding neurodegenerative disorders. Manual segmentation is error-prone, necessitating robust automated techniques. In this paper, we introduce a novel and robust approach for the simultaneous segmentation of multiple brain structures in MRI images. Our method involves the concurrent evolution of 3D surfaces toward predefined anatomical targets, employing an efficient multi-object generalized fast marching method (MOGFMM) for simultaneous object detection. Additionally, we propose an effective evolution function that integrates prior knowledge from anatomical and probabilistic atlases, as well as spatial relationships among the segmented structures. Each deformable surface corresponds to a specific structure. To validate our approach, we conducted experiments on a dataset of real brain images (IBSR) and compared the results with several state-of-the-art methods. The obtained results were promising, demonstrating the effectiveness and superiority of our developed method.