冻干mir -34a功能化的羟基磷灰石促进辐照骨缺损的骨再生

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-09-11 DOI:10.1155/2023/9946012
Xi Wu, Xiaoke Feng, Gang Zhang, Huan Liu
{"title":"冻干mir -34a功能化的羟基磷灰石促进辐照骨缺损的骨再生","authors":"Xi Wu, Xiaoke Feng, Gang Zhang, Huan Liu","doi":"10.1155/2023/9946012","DOIUrl":null,"url":null,"abstract":"The rehabilitation of bone defects after radiotherapy requires the development of osteoinductive bone substitutes. MicroRNA could be used as an osteogenic factor to fabricate functional materials for bone regeneration. In this study, we used miR-34a to enhance bone regeneration after irradiation. We lyophilized lipofectamine-agomiR-34a lipoplexes on hydroxyapatite (HA) to develop miR-34a-functionalized hydroxyapatite (HA-agomiR-34a). The morphology was observed by scanning electron microscope and atomic force microscope. Fluorescence microscopy confirmed the retention of agomiR-34a on the surface of HA. HA-agomiR-34a showed high transfection efficiency and good biocompatibility. HA-agomiR-34a enhanced the osteoblastic differentiation of radiation-impaired bone marrow stromal cells (BMSCs). Implantation of HA-agomiR-34a promoted bone regeneration in irradiated bone defects. HA-agomiR-34a may be a novel and safe bone substitute to promote the reconstruction of bone defects after radiotherapy.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-34a-Functionalized Hydroxyapatite by Lyophilization Promoted Bone Regeneration in Irradiated Bone Defects\",\"authors\":\"Xi Wu, Xiaoke Feng, Gang Zhang, Huan Liu\",\"doi\":\"10.1155/2023/9946012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rehabilitation of bone defects after radiotherapy requires the development of osteoinductive bone substitutes. MicroRNA could be used as an osteogenic factor to fabricate functional materials for bone regeneration. In this study, we used miR-34a to enhance bone regeneration after irradiation. We lyophilized lipofectamine-agomiR-34a lipoplexes on hydroxyapatite (HA) to develop miR-34a-functionalized hydroxyapatite (HA-agomiR-34a). The morphology was observed by scanning electron microscope and atomic force microscope. Fluorescence microscopy confirmed the retention of agomiR-34a on the surface of HA. HA-agomiR-34a showed high transfection efficiency and good biocompatibility. HA-agomiR-34a enhanced the osteoblastic differentiation of radiation-impaired bone marrow stromal cells (BMSCs). Implantation of HA-agomiR-34a promoted bone regeneration in irradiated bone defects. HA-agomiR-34a may be a novel and safe bone substitute to promote the reconstruction of bone defects after radiotherapy.\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9946012\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9946012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

放射治疗后骨缺损的修复需要骨诱导替代物的发展。MicroRNA可作为成骨因子用于骨再生功能材料的制备。在本研究中,我们使用miR-34a促进辐照后骨再生。我们冻干脂质体- agomir -34a在羟基磷灰石(HA)上形成mir -34a功能化的羟基磷灰石(HA- agomir -34a)。用扫描电镜和原子力显微镜观察其形貌。荧光显微镜证实在HA表面有agomiR-34a的保留。HA-agomiR-34a转染效率高,生物相容性好。HA-agomiR-34a增强了辐射损伤的骨髓基质细胞(BMSCs)的成骨分化。植入HA-agomiR-34a促进辐照骨缺损的骨再生。HA-agomiR-34a可能是一种新型安全的骨替代物,可促进放疗后骨缺损的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MiR-34a-Functionalized Hydroxyapatite by Lyophilization Promoted Bone Regeneration in Irradiated Bone Defects
The rehabilitation of bone defects after radiotherapy requires the development of osteoinductive bone substitutes. MicroRNA could be used as an osteogenic factor to fabricate functional materials for bone regeneration. In this study, we used miR-34a to enhance bone regeneration after irradiation. We lyophilized lipofectamine-agomiR-34a lipoplexes on hydroxyapatite (HA) to develop miR-34a-functionalized hydroxyapatite (HA-agomiR-34a). The morphology was observed by scanning electron microscope and atomic force microscope. Fluorescence microscopy confirmed the retention of agomiR-34a on the surface of HA. HA-agomiR-34a showed high transfection efficiency and good biocompatibility. HA-agomiR-34a enhanced the osteoblastic differentiation of radiation-impaired bone marrow stromal cells (BMSCs). Implantation of HA-agomiR-34a promoted bone regeneration in irradiated bone defects. HA-agomiR-34a may be a novel and safe bone substitute to promote the reconstruction of bone defects after radiotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs) Endothelial Cell-Derived Exosomes Inhibit Osteoblast Apoptosis and Steroid-Induced Necrosis of Femoral Head Progression by Activating the PI3K/Akt/Bcl-2 Pathway Chromatin Condensation Delays Senescence in Human Mesenchymal Stem Cells by Safeguarding Nuclear Damages during In Vitro Expansion Targeting of C-ROS-1 Activity Using a Controlled Release Carrier to Treat Craniosynostosis in a Preclinical Model of Saethre-Chotzen Syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1