纳米流体热管传热机理的探索性综述

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-10-17 DOI:10.18186/thermal.1377230
Udayvir SINGH, Harshit PANDEY, Naveen Kumar GUPTA
{"title":"纳米流体热管传热机理的探索性综述","authors":"Udayvir SINGH, Harshit PANDEY, Naveen Kumar GUPTA","doi":"10.18186/thermal.1377230","DOIUrl":null,"url":null,"abstract":"The current study reviews the research on nanosuspension-enhanced heat pipe technologies. The reviewed studies are categorized based on the nanosuspension type incorporated in the heat pipe i.e., mono & hybrid. The study attempts to identify the heat transport modes in heat pipes and explore their dominance among each other. The dominance of the identified mech-anisms was found to be a strong function of the heat pipe type investigated and get signifi-cantly influenced by the operating conditions. The current review paper will aid in properly understanding the thermal mechanisms prevalent in heat pipes filled with nanosuspensions and to further optimizing their thermal response.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exploratory review on heat transfer mechanisms in nanofluid based heat pipes\",\"authors\":\"Udayvir SINGH, Harshit PANDEY, Naveen Kumar GUPTA\",\"doi\":\"10.18186/thermal.1377230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study reviews the research on nanosuspension-enhanced heat pipe technologies. The reviewed studies are categorized based on the nanosuspension type incorporated in the heat pipe i.e., mono & hybrid. The study attempts to identify the heat transport modes in heat pipes and explore their dominance among each other. The dominance of the identified mech-anisms was found to be a strong function of the heat pipe type investigated and get signifi-cantly influenced by the operating conditions. The current review paper will aid in properly understanding the thermal mechanisms prevalent in heat pipes filled with nanosuspensions and to further optimizing their thermal response.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1377230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1377230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了纳米悬浮增强热管技术的研究进展。所回顾的研究是根据热管中包含的纳米悬浮液类型进行分类的,即单晶和纳米悬浮液;混合动力车。本研究试图确定热管中的热传递模式,并探讨它们之间的优势。研究发现,所识别的机制的主导地位与所研究的热管类型有很大关系,并受到操作条件的显著影响。本文将有助于正确理解纳米悬浮液填充热管的热机制,并进一步优化其热响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An exploratory review on heat transfer mechanisms in nanofluid based heat pipes
The current study reviews the research on nanosuspension-enhanced heat pipe technologies. The reviewed studies are categorized based on the nanosuspension type incorporated in the heat pipe i.e., mono & hybrid. The study attempts to identify the heat transport modes in heat pipes and explore their dominance among each other. The dominance of the identified mech-anisms was found to be a strong function of the heat pipe type investigated and get signifi-cantly influenced by the operating conditions. The current review paper will aid in properly understanding the thermal mechanisms prevalent in heat pipes filled with nanosuspensions and to further optimizing their thermal response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Evaluation of the thermal efficiency of nanofluid flows in flat plate solar collector Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1