合成气高压燃烧过程中CO激光吸收测量

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering for Gas Turbines and Power-transactions of The Asme Pub Date : 2023-10-17 DOI:10.1115/1.4063414
Sean P. Cooper, Damien Nativel, Olivier E. Mathieu, Mustapha Fikri, Eric Petersen, Christof Schulz
{"title":"合成气高压燃烧过程中CO激光吸收测量","authors":"Sean P. Cooper, Damien Nativel, Olivier E. Mathieu, Mustapha Fikri, Eric Petersen, Christof Schulz","doi":"10.1115/1.4063414","DOIUrl":null,"url":null,"abstract":"Abstract Syngas is a desirable fuel for combustion in the Allam-Fetvedt cycle, which involves combustion under supercritical-CO2 conditions. While some work has been conducted in collecting ignition delay times (IDT) at the extreme pressures required by these systems, significant model deficiencies remain. Additionally, considerable barriers in terms of nonideal gas dynamic effects have been shown for these experiments in shock tubes. Further investigation into the fundamental combustion kinetics of H2/CO/CO2 mixtures is required. Time-resolved speciation measurements for target species have been shown to better aid in improving the understanding of underlying chemical kinetics than global ignition delay time measurements. Therefore, laser absorption measurements of CO were measured behind reflected shock waves during combustion of syngas at 5 and 10 bar and temperatures between 1080 and 2100 K. The mixtures investigated utilized H2-to-CO ratios of 1:1 and 1:4, respectively, each at stoichiometric conditions, allowing for discussions of the effect of initial fuel composition. A ratio of fuel to CO2 of 1:2 was also utilized to represent commercially available syngas. The mixtures were diluted in helium and argon (20% He, 76.5% Ar) to minimize thermal effects and to expedite CO thermal relaxation during the experiment. The resulting CO time histories were then compared to modern chemical kinetics mechanisms, and disagreement is seen for this system, which is assumed to be fairly well known. This study elucidates particular chemistry that needs improvement in moving toward a better understanding of syngas combustion at elevated pressures.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO Laser Absorption Measurements During Syngas Combustion at High Pressure\",\"authors\":\"Sean P. Cooper, Damien Nativel, Olivier E. Mathieu, Mustapha Fikri, Eric Petersen, Christof Schulz\",\"doi\":\"10.1115/1.4063414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Syngas is a desirable fuel for combustion in the Allam-Fetvedt cycle, which involves combustion under supercritical-CO2 conditions. While some work has been conducted in collecting ignition delay times (IDT) at the extreme pressures required by these systems, significant model deficiencies remain. Additionally, considerable barriers in terms of nonideal gas dynamic effects have been shown for these experiments in shock tubes. Further investigation into the fundamental combustion kinetics of H2/CO/CO2 mixtures is required. Time-resolved speciation measurements for target species have been shown to better aid in improving the understanding of underlying chemical kinetics than global ignition delay time measurements. Therefore, laser absorption measurements of CO were measured behind reflected shock waves during combustion of syngas at 5 and 10 bar and temperatures between 1080 and 2100 K. The mixtures investigated utilized H2-to-CO ratios of 1:1 and 1:4, respectively, each at stoichiometric conditions, allowing for discussions of the effect of initial fuel composition. A ratio of fuel to CO2 of 1:2 was also utilized to represent commercially available syngas. The mixtures were diluted in helium and argon (20% He, 76.5% Ar) to minimize thermal effects and to expedite CO thermal relaxation during the experiment. The resulting CO time histories were then compared to modern chemical kinetics mechanisms, and disagreement is seen for this system, which is assumed to be fairly well known. This study elucidates particular chemistry that needs improvement in moving toward a better understanding of syngas combustion at elevated pressures.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063414\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063414","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

合成气是在Allam-Fetvedt循环中燃烧的理想燃料,该循环涉及超临界co2条件下的燃烧。虽然在收集这些系统所需的极端压力下的点火延迟时间(IDT)方面已经进行了一些工作,但仍然存在重大的模型缺陷。此外,在激波管中进行的这些实验表明,在非理想气体动力学效应方面存在相当大的障碍。需要进一步研究H2/CO/CO2混合物的基本燃烧动力学。对目标物种进行时间分辨的物种形成测量已被证明比全局点火延迟时间测量更有助于提高对潜在化学动力学的理解。因此,一氧化碳的激光吸收测量是在合成气燃烧时,在5和10 bar,温度在1080和2100 K之间的反射激波后测量的。所研究的混合物分别在化学计量条件下使用1:1和1:4的h2 - co比,允许讨论初始燃料成分的影响。燃料与二氧化碳的比例为1:2,也用于代表商业上可获得的合成气。在氦和氩(20% He, 76.5% Ar)中稀释混合物,以最小化热效应并加速实验过程中的CO热松弛。然后将得到的CO时间历史与现代化学动力学机制进行比较,发现该系统存在分歧,该系统被认为是相当众所周知的。这项研究阐明了需要改进的特殊化学,以便更好地理解合成气在高压下的燃烧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO Laser Absorption Measurements During Syngas Combustion at High Pressure
Abstract Syngas is a desirable fuel for combustion in the Allam-Fetvedt cycle, which involves combustion under supercritical-CO2 conditions. While some work has been conducted in collecting ignition delay times (IDT) at the extreme pressures required by these systems, significant model deficiencies remain. Additionally, considerable barriers in terms of nonideal gas dynamic effects have been shown for these experiments in shock tubes. Further investigation into the fundamental combustion kinetics of H2/CO/CO2 mixtures is required. Time-resolved speciation measurements for target species have been shown to better aid in improving the understanding of underlying chemical kinetics than global ignition delay time measurements. Therefore, laser absorption measurements of CO were measured behind reflected shock waves during combustion of syngas at 5 and 10 bar and temperatures between 1080 and 2100 K. The mixtures investigated utilized H2-to-CO ratios of 1:1 and 1:4, respectively, each at stoichiometric conditions, allowing for discussions of the effect of initial fuel composition. A ratio of fuel to CO2 of 1:2 was also utilized to represent commercially available syngas. The mixtures were diluted in helium and argon (20% He, 76.5% Ar) to minimize thermal effects and to expedite CO thermal relaxation during the experiment. The resulting CO time histories were then compared to modern chemical kinetics mechanisms, and disagreement is seen for this system, which is assumed to be fairly well known. This study elucidates particular chemistry that needs improvement in moving toward a better understanding of syngas combustion at elevated pressures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
期刊最新文献
Effect of Inert Species On the Static and Dynamic Stability of a Piloted, Swirl-Stabilized Flame Advanced Modelling of Flow and Heat Transfer in Rotating Disc Cavities Using Open-Source CFD Reacting Flow Prediction of the Low-Swirl Lifted Flame in an Aeronautical Combustor with Angular Air Supply Effect of Unsteady Fan-Intake Interaction On Short Intake Design Intermittency of Flame Structure and Thermo-acoustic Behavior in a Staged Multipoint Injector Using Liquid Fuel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1