{"title":"d阶固定随机正则图上的大独立集","authors":"Raffaele Marino, Scott Kirkpatrick","doi":"10.3390/computation11100206","DOIUrl":null,"url":null,"abstract":"The maximum independent set problem is a classic and fundamental combinatorial challenge, where the objective is to find the largest subset of vertices in a graph such that no two vertices are adjacent. In this paper, we introduce a novel linear prioritized local algorithm tailored to address this problem on random d-regular graphs with a small and fixed degree d. Through exhaustive numerical simulations, we empirically investigated the independence ratio, i.e., the ratio between the cardinality of the independent set found and the order of the graph, which was achieved by our algorithm across random d-regular graphs with degree d ranging from 5 to 100. Remarkably, for every d within this range, our results surpassed the existing lower bounds determined by theoretical methods. Consequently, our findings suggest new conjectured lower bounds for the MIS problem on such graph structures. This finding has been obtained using a prioritized local algorithm. This algorithm is termed ‘prioritized’ because it strategically assigns priority in vertex selection, thereby iteratively adding them to the independent set.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"92 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Large Independent Sets on Random d-Regular Graphs with Fixed Degree d\",\"authors\":\"Raffaele Marino, Scott Kirkpatrick\",\"doi\":\"10.3390/computation11100206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum independent set problem is a classic and fundamental combinatorial challenge, where the objective is to find the largest subset of vertices in a graph such that no two vertices are adjacent. In this paper, we introduce a novel linear prioritized local algorithm tailored to address this problem on random d-regular graphs with a small and fixed degree d. Through exhaustive numerical simulations, we empirically investigated the independence ratio, i.e., the ratio between the cardinality of the independent set found and the order of the graph, which was achieved by our algorithm across random d-regular graphs with degree d ranging from 5 to 100. Remarkably, for every d within this range, our results surpassed the existing lower bounds determined by theoretical methods. Consequently, our findings suggest new conjectured lower bounds for the MIS problem on such graph structures. This finding has been obtained using a prioritized local algorithm. This algorithm is termed ‘prioritized’ because it strategically assigns priority in vertex selection, thereby iteratively adding them to the independent set.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11100206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11100206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Large Independent Sets on Random d-Regular Graphs with Fixed Degree d
The maximum independent set problem is a classic and fundamental combinatorial challenge, where the objective is to find the largest subset of vertices in a graph such that no two vertices are adjacent. In this paper, we introduce a novel linear prioritized local algorithm tailored to address this problem on random d-regular graphs with a small and fixed degree d. Through exhaustive numerical simulations, we empirically investigated the independence ratio, i.e., the ratio between the cardinality of the independent set found and the order of the graph, which was achieved by our algorithm across random d-regular graphs with degree d ranging from 5 to 100. Remarkably, for every d within this range, our results surpassed the existing lower bounds determined by theoretical methods. Consequently, our findings suggest new conjectured lower bounds for the MIS problem on such graph structures. This finding has been obtained using a prioritized local algorithm. This algorithm is termed ‘prioritized’ because it strategically assigns priority in vertex selection, thereby iteratively adding them to the independent set.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.