Evgeniy Savelyev, Andrey Akhmatkhanov, Boris Slautin, Herve Tronche, Florent Doutre, Tommaso Lunghi, Pascal Baldi, Vladimir Shur
{"title":"软质子交换LiNbO3产生的平面波导中局部极化反转产生周期畴结构","authors":"Evgeniy Savelyev, Andrey Akhmatkhanov, Boris Slautin, Herve Tronche, Florent Doutre, Tommaso Lunghi, Pascal Baldi, Vladimir Shur","doi":"10.1142/s2010135x23500200","DOIUrl":null,"url":null,"abstract":"The paper presents the results of an experimental study of the local polarization reversal and creation of domains by a biased tip of scanning probe microscope (SPM) in lithium niobate single crystals of congruent composition with a surface layer modified by soft proton exchange (SPE). The depth dependence of H[Formula: see text] ions concentration in the SPE-modified layer measured by confocal Raman microscopy demonstrates a sufficient composition gradient. The creation of isolated domains and stripe domain structures has been done by two switching modes: (1) point switching by field application in separated points and (2) line scanning switching by motion of the biased tip being in contact with the sample surface. For point switching for pulse durations less than 10[Formula: see text]s, the logarithmic dependence of the domain diameter on the pulse duration was observed. The change of the dependence to a linear one for pulse duration above 10[Formula: see text]s has been attributed to the transition from the stochastic step generation at the domain wall to the deterministic one at the domain vertexes. The periodical structure of stripe domains was created in SPE CLN planar waveguides by scanning at elevated temperature. The revealed switching regime suppresses electrostatic interaction of neighboring domains and leads to a significant improvement of the domain structure regularity. The creation of the stable periodical domain structure with submicron periods in SPE CLN planar waveguides was demonstrated.","PeriodicalId":14871,"journal":{"name":"Journal of Advanced Dielectrics","volume":"2 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creation of periodical domain structure by local polarization reversal in planar waveguide produced by soft proton exchange in LiNbO<sub>3</sub>\",\"authors\":\"Evgeniy Savelyev, Andrey Akhmatkhanov, Boris Slautin, Herve Tronche, Florent Doutre, Tommaso Lunghi, Pascal Baldi, Vladimir Shur\",\"doi\":\"10.1142/s2010135x23500200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of an experimental study of the local polarization reversal and creation of domains by a biased tip of scanning probe microscope (SPM) in lithium niobate single crystals of congruent composition with a surface layer modified by soft proton exchange (SPE). The depth dependence of H[Formula: see text] ions concentration in the SPE-modified layer measured by confocal Raman microscopy demonstrates a sufficient composition gradient. The creation of isolated domains and stripe domain structures has been done by two switching modes: (1) point switching by field application in separated points and (2) line scanning switching by motion of the biased tip being in contact with the sample surface. For point switching for pulse durations less than 10[Formula: see text]s, the logarithmic dependence of the domain diameter on the pulse duration was observed. The change of the dependence to a linear one for pulse duration above 10[Formula: see text]s has been attributed to the transition from the stochastic step generation at the domain wall to the deterministic one at the domain vertexes. The periodical structure of stripe domains was created in SPE CLN planar waveguides by scanning at elevated temperature. The revealed switching regime suppresses electrostatic interaction of neighboring domains and leads to a significant improvement of the domain structure regularity. The creation of the stable periodical domain structure with submicron periods in SPE CLN planar waveguides was demonstrated.\",\"PeriodicalId\":14871,\"journal\":{\"name\":\"Journal of Advanced Dielectrics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Dielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010135x23500200\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Dielectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010135x23500200","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Creation of periodical domain structure by local polarization reversal in planar waveguide produced by soft proton exchange in LiNbO3
The paper presents the results of an experimental study of the local polarization reversal and creation of domains by a biased tip of scanning probe microscope (SPM) in lithium niobate single crystals of congruent composition with a surface layer modified by soft proton exchange (SPE). The depth dependence of H[Formula: see text] ions concentration in the SPE-modified layer measured by confocal Raman microscopy demonstrates a sufficient composition gradient. The creation of isolated domains and stripe domain structures has been done by two switching modes: (1) point switching by field application in separated points and (2) line scanning switching by motion of the biased tip being in contact with the sample surface. For point switching for pulse durations less than 10[Formula: see text]s, the logarithmic dependence of the domain diameter on the pulse duration was observed. The change of the dependence to a linear one for pulse duration above 10[Formula: see text]s has been attributed to the transition from the stochastic step generation at the domain wall to the deterministic one at the domain vertexes. The periodical structure of stripe domains was created in SPE CLN planar waveguides by scanning at elevated temperature. The revealed switching regime suppresses electrostatic interaction of neighboring domains and leads to a significant improvement of the domain structure regularity. The creation of the stable periodical domain structure with submicron periods in SPE CLN planar waveguides was demonstrated.
期刊介绍:
The Journal of Advanced Dielectrics is an international peer-reviewed journal for original contributions on the understanding and applications of dielectrics in modern electronic devices and systems. The journal seeks to provide an interdisciplinary forum for the rapid communication of novel research of high quality in, but not limited to, the following topics: Fundamentals of dielectrics (ab initio or first-principles calculations, density functional theory, phenomenological approaches). Polarization and related phenomena (spontaneous polarization, domain structure, polarization reversal). Dielectric relaxation (universal relaxation law, relaxor ferroelectrics, giant permittivity, flexoelectric effect). Ferroelectric materials and devices (single crystals and ceramics). Thin/thick films and devices (ferroelectric memory devices, capacitors). Piezoelectric materials and applications (lead-based piezo-ceramics and crystals, lead-free piezoelectrics). Pyroelectric materials and devices Multiferroics (single phase multiferroics, composite ferromagnetic ferroelectric materials). Electrooptic and photonic materials. Energy harvesting and storage materials (polymer, composite, super-capacitor). Phase transitions and structural characterizations. Microwave and milimeterwave dielectrics. Nanostructure, size effects and characterizations. Engineering dielectrics for high voltage applications (insulation, electrical breakdown). Modeling (microstructure evolution and microstructure-property relationships, multiscale modeling of dielectrics).