Dimitrios J. Economou, Neel Krishnaswami, Jana Dunfield
{"title":"注重精细化类型","authors":"Dimitrios J. Economou, Neel Krishnaswami, Jana Dunfield","doi":"10.1145/3610408","DOIUrl":null,"url":null,"abstract":"We present a logically principled foundation for systematizing, in a way that works with any computational effect and evaluation order, SMT constraint generation seen in refinement type systems for functional programming languages. By carefully combining a focalized variant of call-by-push-value, bidirectional typing, and our novel technique of value-determined indexes, our system generates solvable SMT constraints without existential (unification) variables. We design a polarized subtyping relation allowing us to prove our logically focused typing algorithm is sound, complete, and decidable. We prove type soundness of our declarative system with respect to an elementary domain-theoretic denotational semantics. Type soundness implies, relatively simply, the total correctness and logical consistency of our system. The relative ease with which we obtain both algorithmic and semantic results ultimately stems from the proof-theoretic technique of focalization.","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"70 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Focusing on Refinement Typing\",\"authors\":\"Dimitrios J. Economou, Neel Krishnaswami, Jana Dunfield\",\"doi\":\"10.1145/3610408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a logically principled foundation for systematizing, in a way that works with any computational effect and evaluation order, SMT constraint generation seen in refinement type systems for functional programming languages. By carefully combining a focalized variant of call-by-push-value, bidirectional typing, and our novel technique of value-determined indexes, our system generates solvable SMT constraints without existential (unification) variables. We design a polarized subtyping relation allowing us to prove our logically focused typing algorithm is sound, complete, and decidable. We prove type soundness of our declarative system with respect to an elementary domain-theoretic denotational semantics. Type soundness implies, relatively simply, the total correctness and logical consistency of our system. The relative ease with which we obtain both algorithmic and semantic results ultimately stems from the proof-theoretic technique of focalization.\",\"PeriodicalId\":50939,\"journal\":{\"name\":\"ACM Transactions on Programming Languages and Systems\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Programming Languages and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3610408\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610408","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We present a logically principled foundation for systematizing, in a way that works with any computational effect and evaluation order, SMT constraint generation seen in refinement type systems for functional programming languages. By carefully combining a focalized variant of call-by-push-value, bidirectional typing, and our novel technique of value-determined indexes, our system generates solvable SMT constraints without existential (unification) variables. We design a polarized subtyping relation allowing us to prove our logically focused typing algorithm is sound, complete, and decidable. We prove type soundness of our declarative system with respect to an elementary domain-theoretic denotational semantics. Type soundness implies, relatively simply, the total correctness and logical consistency of our system. The relative ease with which we obtain both algorithmic and semantic results ultimately stems from the proof-theoretic technique of focalization.
期刊介绍:
ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects:
language design for sequential and parallel programming
programming language implementation
programming language semantics
compilers and interpreters
runtime systems for program execution
storage allocation and garbage collection
languages and methods for writing program specifications
languages and methods for secure and reliable programs
testing and verification of programs