基于机器学习的机械故障诊断实验室振动分析数据集和基线方法

Bagus Tris Atmaja, Haris Ihsannur, None Suyanto, Dhany Arifianto
{"title":"基于机器学习的机械故障诊断实验室振动分析数据集和基线方法","authors":"Bagus Tris Atmaja, Haris Ihsannur, None Suyanto, Dhany Arifianto","doi":"10.1007/s42417-023-00959-9","DOIUrl":null,"url":null,"abstract":"The monitoring of machine conditions in a plant is crucial for production in manufacturing. A sudden failure of a machine can stop production and cause a loss of revenue. The vibration signal of a machine is a good indicator of its condition. This paper presents a dataset of vibration signals from a lab-scale machine. The dataset contains four different types of machine conditions: normal, unbalance, misalignment, and bearing fault. Three machine learning methods (SVM, KNN, and GNB) evaluated the dataset, and a perfect result was obtained by one of the methods on a onefold test. The performance of the algorithms is evaluated using weighted accuracy (WA), since the data are balanced. The results show that the best-performing algorithm is the SVM with a WA of 99.75% on the fivefold cross-validations. The dataset is provided in the form of CSV files in an open and free repository at https://zenodo.org/record/7006575 .","PeriodicalId":101320,"journal":{"name":"Journal of Vibration Engineering & Technologies","volume":"116 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lab-Scale Vibration Analysis Dataset and Baseline Methods for Machinery Fault Diagnosis with Machine Learning\",\"authors\":\"Bagus Tris Atmaja, Haris Ihsannur, None Suyanto, Dhany Arifianto\",\"doi\":\"10.1007/s42417-023-00959-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The monitoring of machine conditions in a plant is crucial for production in manufacturing. A sudden failure of a machine can stop production and cause a loss of revenue. The vibration signal of a machine is a good indicator of its condition. This paper presents a dataset of vibration signals from a lab-scale machine. The dataset contains four different types of machine conditions: normal, unbalance, misalignment, and bearing fault. Three machine learning methods (SVM, KNN, and GNB) evaluated the dataset, and a perfect result was obtained by one of the methods on a onefold test. The performance of the algorithms is evaluated using weighted accuracy (WA), since the data are balanced. The results show that the best-performing algorithm is the SVM with a WA of 99.75% on the fivefold cross-validations. The dataset is provided in the form of CSV files in an open and free repository at https://zenodo.org/record/7006575 .\",\"PeriodicalId\":101320,\"journal\":{\"name\":\"Journal of Vibration Engineering & Technologies\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration Engineering & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42417-023-00959-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration Engineering & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42417-023-00959-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工厂机器状态的监测对制造业的生产是至关重要的。机器的突然故障会导致生产停止,并造成收入损失。机器的振动信号是机器状况的良好指示器。本文介绍了一个来自实验室规模机器的振动信号数据集。该数据集包含四种不同类型的机器状态:正常、不平衡、不对中和轴承故障。三种机器学习方法(SVM、KNN和GNB)对数据集进行了评估,其中一种方法在单次测试中获得了较好的结果。由于数据是平衡的,因此使用加权精度(WA)来评估算法的性能。结果表明,在五重交叉验证中,支持向量机算法的WA值为99.75%,表现最佳。该数据集以CSV文件的形式提供在https://zenodo.org/record/7006575上的一个开放和免费的存储库中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lab-Scale Vibration Analysis Dataset and Baseline Methods for Machinery Fault Diagnosis with Machine Learning
The monitoring of machine conditions in a plant is crucial for production in manufacturing. A sudden failure of a machine can stop production and cause a loss of revenue. The vibration signal of a machine is a good indicator of its condition. This paper presents a dataset of vibration signals from a lab-scale machine. The dataset contains four different types of machine conditions: normal, unbalance, misalignment, and bearing fault. Three machine learning methods (SVM, KNN, and GNB) evaluated the dataset, and a perfect result was obtained by one of the methods on a onefold test. The performance of the algorithms is evaluated using weighted accuracy (WA), since the data are balanced. The results show that the best-performing algorithm is the SVM with a WA of 99.75% on the fivefold cross-validations. The dataset is provided in the form of CSV files in an open and free repository at https://zenodo.org/record/7006575 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Modeling and Analysis of Centrifugally Stiffened Proportionally Damped Timoshenko Beam Low-Frequency Wideband Sound Absorption Properties of Composite Layer Micro-perforated Panel Absorber Analysis of the Dynamic of Vector Nozzle Adjustment Mechanism Considering the Effect of Joint Clearance Evaluation of Material Damping Properties in Bituminous Coal: A Comparative Analysis of Numerical and Experimental Approaches A Method for the Assignment of Zeros Using Frequency Response Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1