1959-2020年全球碳收支的多元动态统计模型

Mikkel Bennedsen, Eric Hillebrand, Siem Jan Koopman
{"title":"1959-2020年全球碳收支的多元动态统计模型","authors":"Mikkel Bennedsen, Eric Hillebrand, Siem Jan Koopman","doi":"10.1093/jrsssa/qnac014","DOIUrl":null,"url":null,"abstract":"Abstract We propose a multivariate dynamic statistical model of the global carbon budget (GCB) as represented in the annual data set made available by the Global Carbon Project, covering the sample period 1959–2020. The model connects four main objects of interest: atmospheric carbon dioxide (CO2) concentrations, anthropogenic CO2 emissions, the absorption of CO2 by the terrestrial biosphere (land sink), and by the ocean and marine biosphere (ocean sink). The model captures the GCB equation, which states that emissions not absorbed by either land or ocean sinks must remain in the atmosphere and constitute a flow to the stock of atmospheric concentrations. Emissions depend on global economic activity as measured by World Gross Domestic Product while sink activities depend on the level of atmospheric concentrations and the Southern Oscillation Index. We derive the time series properties of atmospheric concentrations from the model, showing that they contain one unit root and a near-second unit root. The statistical system allows for the estimation of key parameters of the global carbon cycle and for the assessment of estimation uncertainty. It also allows for the estimation and the uncertainty assessment of related variables such as the airborne fraction and the sink rate. We provide short-term forecasts of the components of the GCB.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multivariate dynamic statistical model of the global carbon budget 1959–2020\",\"authors\":\"Mikkel Bennedsen, Eric Hillebrand, Siem Jan Koopman\",\"doi\":\"10.1093/jrsssa/qnac014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a multivariate dynamic statistical model of the global carbon budget (GCB) as represented in the annual data set made available by the Global Carbon Project, covering the sample period 1959–2020. The model connects four main objects of interest: atmospheric carbon dioxide (CO2) concentrations, anthropogenic CO2 emissions, the absorption of CO2 by the terrestrial biosphere (land sink), and by the ocean and marine biosphere (ocean sink). The model captures the GCB equation, which states that emissions not absorbed by either land or ocean sinks must remain in the atmosphere and constitute a flow to the stock of atmospheric concentrations. Emissions depend on global economic activity as measured by World Gross Domestic Product while sink activities depend on the level of atmospheric concentrations and the Southern Oscillation Index. We derive the time series properties of atmospheric concentrations from the model, showing that they contain one unit root and a near-second unit root. The statistical system allows for the estimation of key parameters of the global carbon cycle and for the assessment of estimation uncertainty. It also allows for the estimation and the uncertainty assessment of related variables such as the airborne fraction and the sink rate. We provide short-term forecasts of the components of the GCB.\",\"PeriodicalId\":49985,\"journal\":{\"name\":\"Journal of the Royal Statistical Society\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnac014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnac014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于全球碳项目(global carbon Project)提供的1959-2020年的年度数据集,提出了全球碳预算(GCB)的多元动态统计模型。该模型将四个主要感兴趣的对象联系起来:大气二氧化碳(CO2)浓度、人为二氧化碳排放、陆地生物圈(陆地汇)和海洋和海洋生物圈(海洋汇)对二氧化碳的吸收。该模型捕获了温室气体排放量方程,该方程指出,未被陆地或海洋吸收的排放必须留在大气中,并构成大气浓度储备的一种流动。排放取决于以世界国内生产总值衡量的全球经济活动,而汇活动取决于大气浓度水平和南方涛动指数。我们从模型中推导出大气浓度的时间序列特性,表明它们包含一个单位根和一个近秒单位根。该统计系统允许对全球碳循环的关键参数进行估计,并对估计的不确定性进行评估。它还允许对相关变量进行估计和不确定度评估,如机载部分和吸收速率。我们提供GCB组成部分的短期预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multivariate dynamic statistical model of the global carbon budget 1959–2020
Abstract We propose a multivariate dynamic statistical model of the global carbon budget (GCB) as represented in the annual data set made available by the Global Carbon Project, covering the sample period 1959–2020. The model connects four main objects of interest: atmospheric carbon dioxide (CO2) concentrations, anthropogenic CO2 emissions, the absorption of CO2 by the terrestrial biosphere (land sink), and by the ocean and marine biosphere (ocean sink). The model captures the GCB equation, which states that emissions not absorbed by either land or ocean sinks must remain in the atmosphere and constitute a flow to the stock of atmospheric concentrations. Emissions depend on global economic activity as measured by World Gross Domestic Product while sink activities depend on the level of atmospheric concentrations and the Southern Oscillation Index. We derive the time series properties of atmospheric concentrations from the model, showing that they contain one unit root and a near-second unit root. The statistical system allows for the estimation of key parameters of the global carbon cycle and for the assessment of estimation uncertainty. It also allows for the estimation and the uncertainty assessment of related variables such as the airborne fraction and the sink rate. We provide short-term forecasts of the components of the GCB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Bayesian approach to estimate annual bilateral migration flows for South America using census data Exploring Modeling with Data and Differential Equations Using R Calyampudi Radhakrishna (CR) Rao 1920–2023 Representative pure risk estimation by using data from epidemiologic studies, surveys, and registries: estimating risks for minority subgroups Where the bee sucks: a dynamic Bayesian network approach to decision support for pollinator abundance strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1