基于懒惰学习算法设计无模型自适应PID控制器

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2023-01-01 DOI:10.1515/jisys-2022-0279
Hongcheng Zhou
{"title":"基于懒惰学习算法设计无模型自适应PID控制器","authors":"Hongcheng Zhou","doi":"10.1515/jisys-2022-0279","DOIUrl":null,"url":null,"abstract":"Abstract The nonlinear system is difficult to achieve the desired effect by using traditional proportional integral derivative (PID) or linear controller. First, this study presents an improved lazy learning algorithm based on k-vector nearest neighbors, which not only considers the matching of input and output data, but also considers the consistency of the model. Based on the optimization index of an additional penalty function, the optimal solution of the lazy learning is obtained by the iterative least-square method. Second, based on the improved lazy learning, an adaptive PID control algorithm is proposed. Finally, the control effect under the condition of complete data and incomplete data is compared by simulation experiment.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"33 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design model-free adaptive PID controller based on lazy learning algorithm\",\"authors\":\"Hongcheng Zhou\",\"doi\":\"10.1515/jisys-2022-0279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The nonlinear system is difficult to achieve the desired effect by using traditional proportional integral derivative (PID) or linear controller. First, this study presents an improved lazy learning algorithm based on k-vector nearest neighbors, which not only considers the matching of input and output data, but also considers the consistency of the model. Based on the optimization index of an additional penalty function, the optimal solution of the lazy learning is obtained by the iterative least-square method. Second, based on the improved lazy learning, an adaptive PID control algorithm is proposed. Finally, the control effect under the condition of complete data and incomplete data is compared by simulation experiment.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

传统的比例积分导数(PID)或线性控制器对非线性系统难以达到预期的控制效果。首先,本文提出了一种改进的基于k向量最近邻的懒惰学习算法,该算法不仅考虑了输入输出数据的匹配性,还考虑了模型的一致性。基于附加惩罚函数的优化指标,采用迭代最小二乘法求出懒惰学习的最优解。其次,基于改进的惰性学习,提出了一种自适应PID控制算法。最后,通过仿真实验比较了数据完备和数据不完备情况下的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design model-free adaptive PID controller based on lazy learning algorithm
Abstract The nonlinear system is difficult to achieve the desired effect by using traditional proportional integral derivative (PID) or linear controller. First, this study presents an improved lazy learning algorithm based on k-vector nearest neighbors, which not only considers the matching of input and output data, but also considers the consistency of the model. Based on the optimization index of an additional penalty function, the optimal solution of the lazy learning is obtained by the iterative least-square method. Second, based on the improved lazy learning, an adaptive PID control algorithm is proposed. Finally, the control effect under the condition of complete data and incomplete data is compared by simulation experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
A study on predicting crime rates through machine learning and data mining using text A multiorder feature tracking and explanation strategy for explainable deep learning Intelligent control system for industrial robots based on multi-source data fusion Reinforcement learning with Gaussian process regression using variational free energy A novel distance vector hop localization method for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1