{"title":"基于随机模型控制的电热热水器蓄能潜力评估","authors":"Baxter Williams, Daniel Bishop, Paul Docherty","doi":"10.1080/03036758.2023.2197241","DOIUrl":null,"url":null,"abstract":"As electric hot water cylinders (HWCs) have a large capacity for thermal storage, they are well-suited for Demand Side Management (DSM). This paper compares different methods of HWC temperature control and presents a methodology to assess the amount of thermal storage available in HWCs for demand side management based on use behaviour in different household types. Simple stochastic methods for domestic hot water (DHW) demand prediction were employed to design a smart controller that produced lower rates of unmet DHW demand and higher available storage than setpoint and ripple controllers. The average storage available for DSM from the use of this smart controller is predicted to be between 3.63 and 7.20 kWh per household. These results indicate the use of HWCs for thermal storage is a low-cost viable option for peak-shaving of power system load and could decrease power system greenhouse gas (GHG) emissions in countries such as Aotearoa New Zealand, where GHG-emitting electricity generation is primarily used to meet peak loads.","PeriodicalId":49984,"journal":{"name":"Journal of the Royal Society of New Zealand","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessing the energy storage potential of electric hot water cylinders with stochastic model-based control\",\"authors\":\"Baxter Williams, Daniel Bishop, Paul Docherty\",\"doi\":\"10.1080/03036758.2023.2197241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As electric hot water cylinders (HWCs) have a large capacity for thermal storage, they are well-suited for Demand Side Management (DSM). This paper compares different methods of HWC temperature control and presents a methodology to assess the amount of thermal storage available in HWCs for demand side management based on use behaviour in different household types. Simple stochastic methods for domestic hot water (DHW) demand prediction were employed to design a smart controller that produced lower rates of unmet DHW demand and higher available storage than setpoint and ripple controllers. The average storage available for DSM from the use of this smart controller is predicted to be between 3.63 and 7.20 kWh per household. These results indicate the use of HWCs for thermal storage is a low-cost viable option for peak-shaving of power system load and could decrease power system greenhouse gas (GHG) emissions in countries such as Aotearoa New Zealand, where GHG-emitting electricity generation is primarily used to meet peak loads.\",\"PeriodicalId\":49984,\"journal\":{\"name\":\"Journal of the Royal Society of New Zealand\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Society of New Zealand\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03036758.2023.2197241\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Society of New Zealand","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03036758.2023.2197241","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Assessing the energy storage potential of electric hot water cylinders with stochastic model-based control
As electric hot water cylinders (HWCs) have a large capacity for thermal storage, they are well-suited for Demand Side Management (DSM). This paper compares different methods of HWC temperature control and presents a methodology to assess the amount of thermal storage available in HWCs for demand side management based on use behaviour in different household types. Simple stochastic methods for domestic hot water (DHW) demand prediction were employed to design a smart controller that produced lower rates of unmet DHW demand and higher available storage than setpoint and ripple controllers. The average storage available for DSM from the use of this smart controller is predicted to be between 3.63 and 7.20 kWh per household. These results indicate the use of HWCs for thermal storage is a low-cost viable option for peak-shaving of power system load and could decrease power system greenhouse gas (GHG) emissions in countries such as Aotearoa New Zealand, where GHG-emitting electricity generation is primarily used to meet peak loads.
期刊介绍:
Aims: The Journal of the Royal Society of New Zealand reflects the role of Royal Society Te Aparangi in fostering research and debate across natural sciences, social sciences, and the humanities in New Zealand/Aotearoa and the surrounding Pacific. Research published in Journal of the Royal Society of New Zealand advances scientific knowledge, informs government policy, public awareness and broader society, and is read by researchers worldwide.