{"title":"基于感知的室内建筑环境下无人机鲁棒定位标签放置规划","authors":"Navid Kayhani, Angela Schoellig, Brenda McCabe","doi":"10.1061/jccee5.cpeng-5068","DOIUrl":null,"url":null,"abstract":"Tag-based visual-inertial localization is a lightweight method for enabling autonomous data collection missions of low-cost unmanned aerial vehicles (UAVs) in indoor construction environments. However, finding the optimal tag configuration (i.e., number, size, and location) on dynamic construction sites remains challenging. This work proposes a perception-aware genetic algorithm-based tag placement planner (PGA-TaPP) to determine the optimal tag configuration using four-dimensional (4D) building information models (BIM), considering the project progress, safety requirements, and UAV’s localizability. The proposed method provides a 4D plan for tag placement by maximizing the localizability in user-specified regions of interest (ROIs) while limiting the installation costs. Localizability is quantified using the Fisher information matrix (FIM) and encapsulated in navigable grids. The experimental results show the effectiveness of our method in finding an optimal 4D tag placement plan for the robust localization of UAVs on under-construction indoor sites.","PeriodicalId":50221,"journal":{"name":"Journal of Computing in Civil Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":4.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perception-Aware Tag Placement Planning for Robust Localization of UAVs in Indoor Construction Environments\",\"authors\":\"Navid Kayhani, Angela Schoellig, Brenda McCabe\",\"doi\":\"10.1061/jccee5.cpeng-5068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tag-based visual-inertial localization is a lightweight method for enabling autonomous data collection missions of low-cost unmanned aerial vehicles (UAVs) in indoor construction environments. However, finding the optimal tag configuration (i.e., number, size, and location) on dynamic construction sites remains challenging. This work proposes a perception-aware genetic algorithm-based tag placement planner (PGA-TaPP) to determine the optimal tag configuration using four-dimensional (4D) building information models (BIM), considering the project progress, safety requirements, and UAV’s localizability. The proposed method provides a 4D plan for tag placement by maximizing the localizability in user-specified regions of interest (ROIs) while limiting the installation costs. Localizability is quantified using the Fisher information matrix (FIM) and encapsulated in navigable grids. The experimental results show the effectiveness of our method in finding an optimal 4D tag placement plan for the robust localization of UAVs on under-construction indoor sites.\",\"PeriodicalId\":50221,\"journal\":{\"name\":\"Journal of Computing in Civil Engineering\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/jccee5.cpeng-5068\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/jccee5.cpeng-5068","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Perception-Aware Tag Placement Planning for Robust Localization of UAVs in Indoor Construction Environments
Tag-based visual-inertial localization is a lightweight method for enabling autonomous data collection missions of low-cost unmanned aerial vehicles (UAVs) in indoor construction environments. However, finding the optimal tag configuration (i.e., number, size, and location) on dynamic construction sites remains challenging. This work proposes a perception-aware genetic algorithm-based tag placement planner (PGA-TaPP) to determine the optimal tag configuration using four-dimensional (4D) building information models (BIM), considering the project progress, safety requirements, and UAV’s localizability. The proposed method provides a 4D plan for tag placement by maximizing the localizability in user-specified regions of interest (ROIs) while limiting the installation costs. Localizability is quantified using the Fisher information matrix (FIM) and encapsulated in navigable grids. The experimental results show the effectiveness of our method in finding an optimal 4D tag placement plan for the robust localization of UAVs on under-construction indoor sites.
期刊介绍:
The Journal of Computing in Civil Engineering serves as a resource to researchers, practitioners, and students on advances and innovative ideas in computing as applicable to the engineering profession. Many such ideas emerge from recent developments in computer science, information science, computer engineering, knowledge engineering, and other technical fields. Some examples are innovations in artificial intelligence, parallel processing, distributed computing, graphics and imaging, and information technology. The journal publishes research, implementation, and applications in cross-disciplinary areas including software, such as new programming languages, database-management systems, computer-aided design systems, and expert systems; hardware for robotics, bar coding, remote sensing, data mining, and knowledge acquisition; and strategic issues such as the management of computing resources, implementation strategies, and organizational impacts.