马尔可夫链过程的最大熵设计

IF 1.6 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Survey Statistics and Methodology Pub Date : 2023-06-14 DOI:10.1093/jssam/smad010
Yves Tillé, Bardia Panahbehagh
{"title":"马尔可夫链过程的最大熵设计","authors":"Yves Tillé, Bardia Panahbehagh","doi":"10.1093/jssam/smad010","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study an implementation of maximum entropy (ME) design utilizing a Markov chain. This design, which is also called the conditional Poisson sampling design, is difficult to implement. We first present a new method for calculating the weights associated with conditional Poisson sampling. Then, we study a very simple method of random exchanges of units, which allows switching from one sample to another. This exchange system defines an irreducible and aperiodic Markov chain whose ME design is the stationary distribution. The design can be implemented without enumerating all possible samples. By repeating the exchange process a large number of times, it is possible to select a sample that respects the design. The process is simple to implement, and its convergence rate has been investigated theoretically and by simulation, which led to promising results.","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"237 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Entropy Design by a Markov Chain Process\",\"authors\":\"Yves Tillé, Bardia Panahbehagh\",\"doi\":\"10.1093/jssam/smad010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study an implementation of maximum entropy (ME) design utilizing a Markov chain. This design, which is also called the conditional Poisson sampling design, is difficult to implement. We first present a new method for calculating the weights associated with conditional Poisson sampling. Then, we study a very simple method of random exchanges of units, which allows switching from one sample to another. This exchange system defines an irreducible and aperiodic Markov chain whose ME design is the stationary distribution. The design can be implemented without enumerating all possible samples. By repeating the exchange process a large number of times, it is possible to select a sample that respects the design. The process is simple to implement, and its convergence rate has been investigated theoretically and by simulation, which led to promising results.\",\"PeriodicalId\":17146,\"journal\":{\"name\":\"Journal of Survey Statistics and Methodology\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Survey Statistics and Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jssam/smad010\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jssam/smad010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一种利用马尔可夫链实现最大熵设计的方法。这种设计,也被称为条件泊松抽样设计,很难实现。我们首先提出了一种计算条件泊松抽样相关权值的新方法。然后,我们研究了一种非常简单的单位随机交换方法,它允许从一个样本切换到另一个样本。该交换系统定义了一个不可约的非周期马尔可夫链,其ME设计为平稳分布。该设计可以在不列举所有可能的样本的情况下实现。通过多次重复交换过程,可以选择符合设计的样品。该方法实现简单,并对其收敛速度进行了理论和仿真研究,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum Entropy Design by a Markov Chain Process
Abstract In this article, we study an implementation of maximum entropy (ME) design utilizing a Markov chain. This design, which is also called the conditional Poisson sampling design, is difficult to implement. We first present a new method for calculating the weights associated with conditional Poisson sampling. Then, we study a very simple method of random exchanges of units, which allows switching from one sample to another. This exchange system defines an irreducible and aperiodic Markov chain whose ME design is the stationary distribution. The design can be implemented without enumerating all possible samples. By repeating the exchange process a large number of times, it is possible to select a sample that respects the design. The process is simple to implement, and its convergence rate has been investigated theoretically and by simulation, which led to promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
9.50%
发文量
40
期刊介绍: The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.
期刊最新文献
Small Area Poverty Estimation under Heteroskedasticity Investigating Respondent Attention to Experimental Text Lengths A Catch-22—the Test–Retest Method of Reliability Estimation Poverty Mapping Under Area-Level Random Regression Coefficient Poisson Models Peekaboo! The Effect of Different Visible Cash Display and Amount Options During Mail Contact When Recruiting to a Probability-Based Panel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1