{"title":"干式表面磨削瞬态过程的解析解及数值验证","authors":"Juan Luis González-Santander","doi":"10.1007/s10665-023-10295-2","DOIUrl":null,"url":null,"abstract":"Abstract In the framework of Samara–Valencia model for heat transfer in dry surface grinding, analytical expressions for the time-dependent temperature field of the workpiece during the transient regime in which the wheel is engaged (cut-in) and disengaged (cut-out) from the workpiece are calculated. The main assumption we consider is a constant heat flux profile along the contact zone between the wheel and the workpiece. According to the analytical expression obtained for the temperature field, a closed-form expression for the maximum temperature during the cut-in transient regime has been obtained. Further, a very rapid method for the numerical evaluation of maximum temperature during the cut-out is described. This maximum temperature is responsible of the thermal damage of the workpiece. Experimental evidence shows that the thermal damage risk is greater during the cut-out transient regime. The present analytical model reproduces this experimental feature. Finally, the analytical results have been numerically validated using FEM analysis and are intended to be very useful for the monitoring of the online grinding process in order to avoid thermal damage.","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"21 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic solution and numerical validation of the transient regime in dry surface grinding\",\"authors\":\"Juan Luis González-Santander\",\"doi\":\"10.1007/s10665-023-10295-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the framework of Samara–Valencia model for heat transfer in dry surface grinding, analytical expressions for the time-dependent temperature field of the workpiece during the transient regime in which the wheel is engaged (cut-in) and disengaged (cut-out) from the workpiece are calculated. The main assumption we consider is a constant heat flux profile along the contact zone between the wheel and the workpiece. According to the analytical expression obtained for the temperature field, a closed-form expression for the maximum temperature during the cut-in transient regime has been obtained. Further, a very rapid method for the numerical evaluation of maximum temperature during the cut-out is described. This maximum temperature is responsible of the thermal damage of the workpiece. Experimental evidence shows that the thermal damage risk is greater during the cut-out transient regime. The present analytical model reproduces this experimental feature. Finally, the analytical results have been numerically validated using FEM analysis and are intended to be very useful for the monitoring of the online grinding process in order to avoid thermal damage.\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10295-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10665-023-10295-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Analytic solution and numerical validation of the transient regime in dry surface grinding
Abstract In the framework of Samara–Valencia model for heat transfer in dry surface grinding, analytical expressions for the time-dependent temperature field of the workpiece during the transient regime in which the wheel is engaged (cut-in) and disengaged (cut-out) from the workpiece are calculated. The main assumption we consider is a constant heat flux profile along the contact zone between the wheel and the workpiece. According to the analytical expression obtained for the temperature field, a closed-form expression for the maximum temperature during the cut-in transient regime has been obtained. Further, a very rapid method for the numerical evaluation of maximum temperature during the cut-out is described. This maximum temperature is responsible of the thermal damage of the workpiece. Experimental evidence shows that the thermal damage risk is greater during the cut-out transient regime. The present analytical model reproduces this experimental feature. Finally, the analytical results have been numerically validated using FEM analysis and are intended to be very useful for the monitoring of the online grinding process in order to avoid thermal damage.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.