Gergely Márk Csányi, Renátó Vági, Andrea Megyeri, Anna Fülöp , Dániel Nagy, János Pál Vadász, István Üveges
{"title":"三重态损失可以用于多标签少针分类吗?案例研究","authors":"Gergely Márk Csányi, Renátó Vági, Andrea Megyeri, Anna Fülöp , Dániel Nagy, János Pál Vadász, István Üveges","doi":"10.3390/info14100520","DOIUrl":null,"url":null,"abstract":"Few-shot learning is a deep learning subfield that is the focus of research nowadays. This paper addresses the research question of whether a triplet-trained Siamese network, initially designed for multi-class classification, can effectively handle multi-label classification. We conducted a case study to identify any limitations in its application. The experiments were conducted on a dataset containing Hungarian legal decisions of administrative agencies in tax matters belonging to a major legal content provider. We also tested how different Siamese embeddings compare on classifying a previously non-existing label on a binary and a multi-label setting. We found that triplet-trained Siamese networks can be applied to perform classification but with a sampling restriction during training. We also found that the overlap between labels affects the results negatively. The few-shot model, seeing only ten examples for each label, provided competitive results compared to models trained on tens of thousands of court decisions using tf-idf vectorization and logistic regression.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can Triplet Loss Be Used for Multi-Label Few-Shot Classification? A Case Study\",\"authors\":\"Gergely Márk Csányi, Renátó Vági, Andrea Megyeri, Anna Fülöp , Dániel Nagy, János Pál Vadász, István Üveges\",\"doi\":\"10.3390/info14100520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-shot learning is a deep learning subfield that is the focus of research nowadays. This paper addresses the research question of whether a triplet-trained Siamese network, initially designed for multi-class classification, can effectively handle multi-label classification. We conducted a case study to identify any limitations in its application. The experiments were conducted on a dataset containing Hungarian legal decisions of administrative agencies in tax matters belonging to a major legal content provider. We also tested how different Siamese embeddings compare on classifying a previously non-existing label on a binary and a multi-label setting. We found that triplet-trained Siamese networks can be applied to perform classification but with a sampling restriction during training. We also found that the overlap between labels affects the results negatively. The few-shot model, seeing only ten examples for each label, provided competitive results compared to models trained on tens of thousands of court decisions using tf-idf vectorization and logistic regression.\",\"PeriodicalId\":38479,\"journal\":{\"name\":\"Information (Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information (Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14100520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14100520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Can Triplet Loss Be Used for Multi-Label Few-Shot Classification? A Case Study
Few-shot learning is a deep learning subfield that is the focus of research nowadays. This paper addresses the research question of whether a triplet-trained Siamese network, initially designed for multi-class classification, can effectively handle multi-label classification. We conducted a case study to identify any limitations in its application. The experiments were conducted on a dataset containing Hungarian legal decisions of administrative agencies in tax matters belonging to a major legal content provider. We also tested how different Siamese embeddings compare on classifying a previously non-existing label on a binary and a multi-label setting. We found that triplet-trained Siamese networks can be applied to perform classification but with a sampling restriction during training. We also found that the overlap between labels affects the results negatively. The few-shot model, seeing only ten examples for each label, provided competitive results compared to models trained on tens of thousands of court decisions using tf-idf vectorization and logistic regression.