Yeqiang Luo, Jing Liang, Shanghui Lin, Tianmo Bai, Lingchuang Kong, Yan Jin, Xin Zhang, Baofeng Li, Bei Chen
{"title":"深度学习方法在膝关节运动损伤疾病中的应用","authors":"Yeqiang Luo, Jing Liang, Shanghui Lin, Tianmo Bai, Lingchuang Kong, Yan Jin, Xin Zhang, Baofeng Li, Bei Chen","doi":"10.1080/21681163.2023.2261554","DOIUrl":null,"url":null,"abstract":"ABSTRACTDeep learning is a powerful branch of machine learning, which presents a promising new approach for diagnose diseases. However, the deep learning for detecting anterior cruciate ligament still limits to the evaluation of whether there are injuries. The accuracy of the deep learning model is not high, and the parameters are complex. In this study, we have developed a deep learning model based on ResNet-18 to detect ACL conditions. The results suggest that there is no significant difference between our proposed model and two orthopaedic surgeons and radiologists in diagnosing ACL conditions.KEYWORDS: Deep-learningmachine-learningautomated modelanterior cruciate ligament Disclosure statementThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.Data availability statementThis study used a MRNet dataset that gathered from Stanford University Medical Center. This dataset available online and anyone can be used.","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":"14 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of deep learning methods in knee joint sports injury diseases\",\"authors\":\"Yeqiang Luo, Jing Liang, Shanghui Lin, Tianmo Bai, Lingchuang Kong, Yan Jin, Xin Zhang, Baofeng Li, Bei Chen\",\"doi\":\"10.1080/21681163.2023.2261554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTDeep learning is a powerful branch of machine learning, which presents a promising new approach for diagnose diseases. However, the deep learning for detecting anterior cruciate ligament still limits to the evaluation of whether there are injuries. The accuracy of the deep learning model is not high, and the parameters are complex. In this study, we have developed a deep learning model based on ResNet-18 to detect ACL conditions. The results suggest that there is no significant difference between our proposed model and two orthopaedic surgeons and radiologists in diagnosing ACL conditions.KEYWORDS: Deep-learningmachine-learningautomated modelanterior cruciate ligament Disclosure statementThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.Data availability statementThis study used a MRNet dataset that gathered from Stanford University Medical Center. This dataset available online and anyone can be used.\",\"PeriodicalId\":51800,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681163.2023.2261554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2023.2261554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The application of deep learning methods in knee joint sports injury diseases
ABSTRACTDeep learning is a powerful branch of machine learning, which presents a promising new approach for diagnose diseases. However, the deep learning for detecting anterior cruciate ligament still limits to the evaluation of whether there are injuries. The accuracy of the deep learning model is not high, and the parameters are complex. In this study, we have developed a deep learning model based on ResNet-18 to detect ACL conditions. The results suggest that there is no significant difference between our proposed model and two orthopaedic surgeons and radiologists in diagnosing ACL conditions.KEYWORDS: Deep-learningmachine-learningautomated modelanterior cruciate ligament Disclosure statementThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.Data availability statementThis study used a MRNet dataset that gathered from Stanford University Medical Center. This dataset available online and anyone can be used.
期刊介绍:
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.