发射过程中空间摄像机防护系统的设计

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2023-10-12 DOI:10.1155/2023/8827361
Siyu Wang, Haiying Tian, Changxiang Yan
{"title":"发射过程中空间摄像机防护系统的设计","authors":"Siyu Wang, Haiying Tian, Changxiang Yan","doi":"10.1155/2023/8827361","DOIUrl":null,"url":null,"abstract":"In order to improve the safety and reliability and maintain the stability of imaging quality when a space camera with a cargo spaceship is launched, a protection system for the space camera is designed. Firstly, according to the mechanical properties of the space camera, a working principle of the protection system is elaborated, and a model of the system is proposed. Secondly, a protective cover and a vibration isolation block are designed on the basis of shape, size, and requirements of the space camera. Thirdly, based on the finite element mesh, static and sinusoidal vibration simulation calculations of the space camera and its protection system are carried out. Finally, the protection system is validated after mechanical experiment. The results reveal that the three directional fundamental frequencies of space camera are 43.39 Hz, 26.74 Hz, and 22.83 Hz, respectively, and the maximum response of sinusoidal vibration acceleration is 17.02 g, which is amplified by 3.4 times. The image quality of the space camera lens is consistent before and after the test, which satisfies the requirement of the cargo ship.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of the Space Camera Protection System during Launch Process\",\"authors\":\"Siyu Wang, Haiying Tian, Changxiang Yan\",\"doi\":\"10.1155/2023/8827361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the safety and reliability and maintain the stability of imaging quality when a space camera with a cargo spaceship is launched, a protection system for the space camera is designed. Firstly, according to the mechanical properties of the space camera, a working principle of the protection system is elaborated, and a model of the system is proposed. Secondly, a protective cover and a vibration isolation block are designed on the basis of shape, size, and requirements of the space camera. Thirdly, based on the finite element mesh, static and sinusoidal vibration simulation calculations of the space camera and its protection system are carried out. Finally, the protection system is validated after mechanical experiment. The results reveal that the three directional fundamental frequencies of space camera are 43.39 Hz, 26.74 Hz, and 22.83 Hz, respectively, and the maximum response of sinusoidal vibration acceleration is 17.02 g, which is amplified by 3.4 times. The image quality of the space camera lens is consistent before and after the test, which satisfies the requirement of the cargo ship.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8827361\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8827361","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

为了提高货运飞船空间相机发射时的安全性和可靠性,保持成像质量的稳定性,设计了空间相机的防护系统。首先,根据空间相机的力学特性,阐述了保护系统的工作原理,提出了保护系统的模型。其次,根据空间相机的外形、尺寸和要求,设计了防护罩和隔振块。第三,在有限元网格的基础上,对空间相机及其防护系统进行了静振和正弦振动仿真计算。最后,通过力学实验对该保护系统进行了验证。结果表明,空间相机的三个方向基频分别为43.39 Hz、26.74 Hz和22.83 Hz,正弦振动加速度的最大响应为17.02 g,放大了3.4倍。试验前后空间摄像机镜头图像质量基本一致,满足了货运飞船的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of the Space Camera Protection System during Launch Process
In order to improve the safety and reliability and maintain the stability of imaging quality when a space camera with a cargo spaceship is launched, a protection system for the space camera is designed. Firstly, according to the mechanical properties of the space camera, a working principle of the protection system is elaborated, and a model of the system is proposed. Secondly, a protective cover and a vibration isolation block are designed on the basis of shape, size, and requirements of the space camera. Thirdly, based on the finite element mesh, static and sinusoidal vibration simulation calculations of the space camera and its protection system are carried out. Finally, the protection system is validated after mechanical experiment. The results reveal that the three directional fundamental frequencies of space camera are 43.39 Hz, 26.74 Hz, and 22.83 Hz, respectively, and the maximum response of sinusoidal vibration acceleration is 17.02 g, which is amplified by 3.4 times. The image quality of the space camera lens is consistent before and after the test, which satisfies the requirement of the cargo ship.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1