含磁滞算子的磁机械装置模型的正、逆不确定性量化

Pub Date : 2023-10-12 DOI:10.21136/AM.2023.0080-23
Olaf Klein
{"title":"含磁滞算子的磁机械装置模型的正、逆不确定性量化","authors":"Olaf Klein","doi":"10.21136/AM.2023.0080-23","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling real world objects and processes one may have to deal with hysteresis effects but also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone (2013), a model for a magnetostrictive material involving a generalized Prandtl-Islilinskiĭ-operator is considered here.</p><p>Using results of measurements, some parameters in the model are determined and inverse Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining parameters and their uncertainties. Afterwards, the results are used to perform forward UQ and to compare the generated outputs with measured data. This extends some of the results from O. Klein, D. Davino, and C. Visone (2020).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2023.0080-23.pdf","citationCount":"0","resultStr":"{\"title\":\"On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator\",\"authors\":\"Olaf Klein\",\"doi\":\"10.21136/AM.2023.0080-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modeling real world objects and processes one may have to deal with hysteresis effects but also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone (2013), a model for a magnetostrictive material involving a generalized Prandtl-Islilinskiĭ-operator is considered here.</p><p>Using results of measurements, some parameters in the model are determined and inverse Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining parameters and their uncertainties. Afterwards, the results are used to perform forward UQ and to compare the generated outputs with measured data. This extends some of the results from O. Klein, D. Davino, and C. Visone (2020).</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.21136/AM.2023.0080-23.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0080-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0080-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建模现实世界的对象和过程,可能必须处理迟滞效应,但也有不确定性。继D. Davino, P. Krejčí和C. Visone(2013)之后,这里考虑了一个涉及广义Prandtl-Islilinskiĭ-operator的磁致伸缩材料模型。利用测量结果确定模型中的一些参数,并使用逆不确定性量化(UQ)来确定描述剩余参数及其不确定性的随机密度。然后,结果用于执行前向UQ,并将生成的输出与测量数据进行比较。这延伸了O. Klein、D. Davino和C. Visone(2020)的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator

Modeling real world objects and processes one may have to deal with hysteresis effects but also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone (2013), a model for a magnetostrictive material involving a generalized Prandtl-Islilinskiĭ-operator is considered here.

Using results of measurements, some parameters in the model are determined and inverse Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining parameters and their uncertainties. Afterwards, the results are used to perform forward UQ and to compare the generated outputs with measured data. This extends some of the results from O. Klein, D. Davino, and C. Visone (2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1