利用人工智能算法预测铁路轨道临界速度

IF 1.9 Q3 ENGINEERING, MECHANICAL Vibration Pub Date : 2023-10-12 DOI:10.3390/vibration6040053
Ana Ramos, Alexandre Castanheira-Pinto, Aires Colaço, Jesús Fernández-Ruiz, Pedro Alves Costa
{"title":"利用人工智能算法预测铁路轨道临界速度","authors":"Ana Ramos, Alexandre Castanheira-Pinto, Aires Colaço, Jesús Fernández-Ruiz, Pedro Alves Costa","doi":"10.3390/vibration6040053","DOIUrl":null,"url":null,"abstract":"Motivated by concerns regarding safety and maintenance, the operational speed of a railway line must remain significantly below the critical speed associated with the track–ground system. Given the large number of track sections within a railway corridor that potentially need to be analyzed, the development of efficient predictive tools is of the utmost importance. Based on that, the problem can be analyzed in a few seconds instead of taking several hours of computational effort, as required by a numerical analysis. In this context, and for the first time, machine learning algorithms, namely artificial neural networks and support vector machine techniques, are applied to this particular issue. For its derivation, a reliable and robust dataset was developed by means of advanced numerical methodologies that were previously experimentally validated. The database is available as supplemental data and may be used by other researchers. Regarding the prediction process, the performance of both models was very satisfactory. From the results achieved, it is possible to conclude that the prediction tool is a novel and reliable approach for an almost instantaneous prediction of critical speed in a high number of track sections.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"47 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Critical Speed of Railway Tracks Using Artificial Intelligence Algorithms\",\"authors\":\"Ana Ramos, Alexandre Castanheira-Pinto, Aires Colaço, Jesús Fernández-Ruiz, Pedro Alves Costa\",\"doi\":\"10.3390/vibration6040053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by concerns regarding safety and maintenance, the operational speed of a railway line must remain significantly below the critical speed associated with the track–ground system. Given the large number of track sections within a railway corridor that potentially need to be analyzed, the development of efficient predictive tools is of the utmost importance. Based on that, the problem can be analyzed in a few seconds instead of taking several hours of computational effort, as required by a numerical analysis. In this context, and for the first time, machine learning algorithms, namely artificial neural networks and support vector machine techniques, are applied to this particular issue. For its derivation, a reliable and robust dataset was developed by means of advanced numerical methodologies that were previously experimentally validated. The database is available as supplemental data and may be used by other researchers. Regarding the prediction process, the performance of both models was very satisfactory. From the results achieved, it is possible to conclude that the prediction tool is a novel and reliable approach for an almost instantaneous prediction of critical speed in a high number of track sections.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration6040053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6040053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

出于对安全和维护的考虑,铁路线的运行速度必须大大低于与轨道-地面系统相关的临界速度。考虑到铁路走廊内可能需要分析的大量轨道路段,开发有效的预测工具至关重要。基于此,可以在几秒钟内分析问题,而不是像数值分析那样需要花费几个小时的计算时间。在这种情况下,机器学习算法,即人工神经网络和支持向量机技术,第一次被应用于这个特定的问题。对于其推导,通过先前实验验证的先进数值方法开发了可靠且稳健的数据集。该数据库可作为补充数据,可供其他研究人员使用。在预测过程中,两种模型的性能都非常令人满意。从所取得的结果来看,可以得出结论,该预测工具是一种新颖而可靠的方法,几乎可以即时预测大量轨道路段的临界速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Critical Speed of Railway Tracks Using Artificial Intelligence Algorithms
Motivated by concerns regarding safety and maintenance, the operational speed of a railway line must remain significantly below the critical speed associated with the track–ground system. Given the large number of track sections within a railway corridor that potentially need to be analyzed, the development of efficient predictive tools is of the utmost importance. Based on that, the problem can be analyzed in a few seconds instead of taking several hours of computational effort, as required by a numerical analysis. In this context, and for the first time, machine learning algorithms, namely artificial neural networks and support vector machine techniques, are applied to this particular issue. For its derivation, a reliable and robust dataset was developed by means of advanced numerical methodologies that were previously experimentally validated. The database is available as supplemental data and may be used by other researchers. Regarding the prediction process, the performance of both models was very satisfactory. From the results achieved, it is possible to conclude that the prediction tool is a novel and reliable approach for an almost instantaneous prediction of critical speed in a high number of track sections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling Evaluating Contact-Less Sensing and Fault Diagnosis Characteristics in Vibrating Thin Cantilever Beams with a MetGlas® 2826MB Ribbon A Testbench for Measuring the Dynamic Force-Displacement Characteristics of Shockmounts Study on Fluid–Structure Interaction of a Camber Morphing Wing Study on Lateral Vibration of Tail Coach for High-Speed Train under Unsteady Aerodynamic Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1