{"title":"出租车距离均值函数及其几何应用:方法、实现和实例","authors":"Csaba Vincze, Ábris Nagy","doi":"10.3233/fi-222156","DOIUrl":null,"url":null,"abstract":"A distance mean function measures the average distance of points from the elements of a given set of points (focal set) in the space. The level sets of a distance mean function are called generalized conics. In case of infinite focal points the average distance is typically given by integration over the focal set. The paper contains a survey on the applications of taxicab distance mean functions and generalized conics’ theory in geometric tomography: bisection of the focal set and reconstruction problems by coordinate X-rays. The theoretical results are illustrated by implementations in Maple, methods and examples as well.1","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Taxicab Distance Mean Functions and their Geometric Applications: Methods, Implementations and Examples\",\"authors\":\"Csaba Vincze, Ábris Nagy\",\"doi\":\"10.3233/fi-222156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distance mean function measures the average distance of points from the elements of a given set of points (focal set) in the space. The level sets of a distance mean function are called generalized conics. In case of infinite focal points the average distance is typically given by integration over the focal set. The paper contains a survey on the applications of taxicab distance mean functions and generalized conics’ theory in geometric tomography: bisection of the focal set and reconstruction problems by coordinate X-rays. The theoretical results are illustrated by implementations in Maple, methods and examples as well.1\",\"PeriodicalId\":56310,\"journal\":{\"name\":\"Fundamenta Informaticae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/fi-222156\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/fi-222156","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
On Taxicab Distance Mean Functions and their Geometric Applications: Methods, Implementations and Examples
A distance mean function measures the average distance of points from the elements of a given set of points (focal set) in the space. The level sets of a distance mean function are called generalized conics. In case of infinite focal points the average distance is typically given by integration over the focal set. The paper contains a survey on the applications of taxicab distance mean functions and generalized conics’ theory in geometric tomography: bisection of the focal set and reconstruction problems by coordinate X-rays. The theoretical results are illustrated by implementations in Maple, methods and examples as well.1
期刊介绍:
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
solutions by mathematical methods of problems emerging in computer science
solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to):
theory of computing,
complexity theory,
algorithms and data structures,
computational aspects of combinatorics and graph theory,
programming language theory,
theoretical aspects of programming languages,
computer-aided verification,
computer science logic,
database theory,
logic programming,
automated deduction,
formal languages and automata theory,
concurrency and distributed computing,
cryptography and security,
theoretical issues in artificial intelligence,
machine learning,
pattern recognition,
algorithmic game theory,
bioinformatics and computational biology,
quantum computing,
probabilistic methods,
algebraic and categorical methods.