{"title":"基于topsis预测的开关降频PEMFC MPPT","authors":"Jye Yun Fam, Shen Yuong Wong, Mohammad Omar Abdullah, Kasumawati Lias, Saad Mekhilef, Hazrul Mohamed Basri","doi":"10.52549/ijeei.v11i3.4350","DOIUrl":null,"url":null,"abstract":"A maximum power point tracking (MPPT) for a proton exchange membrane fuel cell (PEMFC) using a combination of conventional finite control set model predictive control (FCS-MPC) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is proposed in this paper. The key idea is to maximize the power generation from a PEMFC while minimizing the switching frequency of the power converter. The FCS-MPC technique is formulated to track the maximum power of PEMFC highly affected by ever-changing internal parameters. Meanwhile, the TOPSIS algorithm is applied to overcome the potential weaknesses of insulated-gate bipolar transistor (IGBT), which can only withstand a lower switching frequency. In this project, all simulations were run using MATLAB software to display the output power of the PEMFC system. As a result, the proposed predictive-TOPSIS-based MPPT algorithm can track the MPP for various PEMFC parameters within 0.019 s with an excellent accuracy up to 99.11%. The proposed MPPT technique has fast-tracking of the MPP locus, excellent accuracy, and robustness to environmental changes.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive-TOPSIS-based MPPT for PEMFC Featuring Switching Frequency Reduction\",\"authors\":\"Jye Yun Fam, Shen Yuong Wong, Mohammad Omar Abdullah, Kasumawati Lias, Saad Mekhilef, Hazrul Mohamed Basri\",\"doi\":\"10.52549/ijeei.v11i3.4350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A maximum power point tracking (MPPT) for a proton exchange membrane fuel cell (PEMFC) using a combination of conventional finite control set model predictive control (FCS-MPC) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is proposed in this paper. The key idea is to maximize the power generation from a PEMFC while minimizing the switching frequency of the power converter. The FCS-MPC technique is formulated to track the maximum power of PEMFC highly affected by ever-changing internal parameters. Meanwhile, the TOPSIS algorithm is applied to overcome the potential weaknesses of insulated-gate bipolar transistor (IGBT), which can only withstand a lower switching frequency. In this project, all simulations were run using MATLAB software to display the output power of the PEMFC system. As a result, the proposed predictive-TOPSIS-based MPPT algorithm can track the MPP for various PEMFC parameters within 0.019 s with an excellent accuracy up to 99.11%. The proposed MPPT technique has fast-tracking of the MPP locus, excellent accuracy, and robustness to environmental changes.\",\"PeriodicalId\":37618,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52549/ijeei.v11i3.4350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Predictive-TOPSIS-based MPPT for PEMFC Featuring Switching Frequency Reduction
A maximum power point tracking (MPPT) for a proton exchange membrane fuel cell (PEMFC) using a combination of conventional finite control set model predictive control (FCS-MPC) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is proposed in this paper. The key idea is to maximize the power generation from a PEMFC while minimizing the switching frequency of the power converter. The FCS-MPC technique is formulated to track the maximum power of PEMFC highly affected by ever-changing internal parameters. Meanwhile, the TOPSIS algorithm is applied to overcome the potential weaknesses of insulated-gate bipolar transistor (IGBT), which can only withstand a lower switching frequency. In this project, all simulations were run using MATLAB software to display the output power of the PEMFC system. As a result, the proposed predictive-TOPSIS-based MPPT algorithm can track the MPP for various PEMFC parameters within 0.019 s with an excellent accuracy up to 99.11%. The proposed MPPT technique has fast-tracking of the MPP locus, excellent accuracy, and robustness to environmental changes.
期刊介绍:
The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).