从历史上吸取的教训

IF 1.7 3区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Astronomical Telescopes Instruments and Systems Pub Date : 2023-11-02 DOI:10.1117/1.jatis.10.1.011203
H. Philip Stahl
{"title":"从历史上吸取的教训","authors":"H. Philip Stahl","doi":"10.1117/1.jatis.10.1.011203","DOIUrl":null,"url":null,"abstract":"Pathways to Discovery in Astronomy and Astrophysics for the 2020s has recommended a Great Observatory Maturation Program (GOMaP) to invest in co-maturation of mission concepts and technologies to inform an analysis of alternatives study for an ∼6 m off-axis inscribed telescope. The purpose of this telescope is to sample atmospheric spectra of around 25 potentially habitable exoplanets using ultraviolet, visible, and near-infrared wavelengths; it is planned to launch in the early 2040s with a total cost of less than $11B, including 5 years of operation. A historical review of past missions yields basic programmatic lessons learned to be considered as the community prepares to implement the Decadal Vision. First, technology development is critical for enabling missions. The robustness, breadth, and duration of concept/technology co-maturation is important for mission success. Second, NASA has never “exactly” implemented a Decadal mission as it was recommended. Third, all missions have the same basic technology challenges of mass constraints: mechanical and thermal stability to design, building a space telescope that achieves the required on-orbit performance, and verifying and validating that performance by test and model correlation. Finally, Decadal missions require sustained community support.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large mission implementation lessons from history\",\"authors\":\"H. Philip Stahl\",\"doi\":\"10.1117/1.jatis.10.1.011203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathways to Discovery in Astronomy and Astrophysics for the 2020s has recommended a Great Observatory Maturation Program (GOMaP) to invest in co-maturation of mission concepts and technologies to inform an analysis of alternatives study for an ∼6 m off-axis inscribed telescope. The purpose of this telescope is to sample atmospheric spectra of around 25 potentially habitable exoplanets using ultraviolet, visible, and near-infrared wavelengths; it is planned to launch in the early 2040s with a total cost of less than $11B, including 5 years of operation. A historical review of past missions yields basic programmatic lessons learned to be considered as the community prepares to implement the Decadal Vision. First, technology development is critical for enabling missions. The robustness, breadth, and duration of concept/technology co-maturation is important for mission success. Second, NASA has never “exactly” implemented a Decadal mission as it was recommended. Third, all missions have the same basic technology challenges of mass constraints: mechanical and thermal stability to design, building a space telescope that achieves the required on-orbit performance, and verifying and validating that performance by test and model correlation. Finally, Decadal missions require sustained community support.\",\"PeriodicalId\":54342,\"journal\":{\"name\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jatis.10.1.011203\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.1.011203","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

2020年代天文学和天体物理学的发现之路已经推荐了一个大天文台成熟计划(GOMaP),以投资于任务概念和技术的共同成熟,为一个~ 6米离轴内倾角望远镜的替代研究分析提供信息。这架望远镜的目的是利用紫外线、可见光和近红外波长对大约25颗可能适合居住的系外行星的大气光谱进行采样;它计划在21世纪40年代初发射,总成本不到110亿美元,包括5年的运营。对过去特派团的历史审查可以得出在社区准备执行十年远景时所吸取的基本方案教训。首先,技术发展对实现任务至关重要。概念/技术共同成熟的稳健性、广度和持续时间对任务的成功至关重要。其次,美国宇航局从未“完全”按照建议执行十年任务。第三,所有任务都面临同样的质量约束的基本技术挑战:设计机械和热稳定性,建造一个达到所需在轨性能的空间望远镜,并通过测试和模型关联来验证和验证该性能。最后,十年特派团需要持续的社区支助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large mission implementation lessons from history
Pathways to Discovery in Astronomy and Astrophysics for the 2020s has recommended a Great Observatory Maturation Program (GOMaP) to invest in co-maturation of mission concepts and technologies to inform an analysis of alternatives study for an ∼6 m off-axis inscribed telescope. The purpose of this telescope is to sample atmospheric spectra of around 25 potentially habitable exoplanets using ultraviolet, visible, and near-infrared wavelengths; it is planned to launch in the early 2040s with a total cost of less than $11B, including 5 years of operation. A historical review of past missions yields basic programmatic lessons learned to be considered as the community prepares to implement the Decadal Vision. First, technology development is critical for enabling missions. The robustness, breadth, and duration of concept/technology co-maturation is important for mission success. Second, NASA has never “exactly” implemented a Decadal mission as it was recommended. Third, all missions have the same basic technology challenges of mass constraints: mechanical and thermal stability to design, building a space telescope that achieves the required on-orbit performance, and verifying and validating that performance by test and model correlation. Finally, Decadal missions require sustained community support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
13.00%
发文量
119
期刊介绍: The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.
期刊最新文献
Design, implementation, and performance of the primary reflector for SALTUS Solar system science with the Single Aperture Large Telescope for Universe Studies space observatory Milky Way and nearby galaxy science with the SALTUS space observatory Adjustable X-ray optics: thin-film actuator measurement and figure correction performance FIREBall-2 UV balloon telescope in-flight calibration system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1