自动脑电图源分离策略在癫痫发作预测中的应用

Banu Priya Prathaban, Subash Rajendran, Ramachandran Balasubramanian
{"title":"自动脑电图源分离策略在癫痫发作预测中的应用","authors":"Banu Priya Prathaban, Subash Rajendran, Ramachandran Balasubramanian","doi":"10.4015/s1016237223500321","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is a common clinical method of recording the electrical activity of the brain. EEG can record High-Frequency Oscillations ([Formula: see text]80 HZ), which carry appropriate information regarding Epilepsy. High-Frequency Oscillations (HFO) serve as a potential biomarker for Epileptogenesis. EEG signals are often prone to artifact corruptions, which mislead the clinicians by the incorrect signal interpretations. Therefore, automatic artifact removal approach is a key phase in all the Brain-Computer Interface (BCI) applications. In this work, the automatic artifact identification and removal strategy without consuming any supplementary reference channel using two different approaches is developed and discussed. A proficient novel Modified Online Bi-Conjugate Gradient-based Independent Component Analysis (MOBICA) is developed. An efficient threshold-based peak detection and removal strategy, Sparsity-based Artifact Removal Technique (SART) is constructed, where Principle Component Analysis (PCA) is replaced with Singular Value Decomposition (SVD) of the K-SVD algorithm. Both the proposed models are evaluated on two different datasets like CHB-MIT and SRM scalp data recordings. Both the MOBICA and SART algorithms removed the artifactual component parting the intact EEG source component. Finally, the performance of the proposed agenda is compared with the conventional approaches. Our MOBICA and SART algorithms remove the artifactual component parting the intact EEG source component. Empirical results of SART on CHB-MIT and SRM databases of 52 EEG recordings outperform MOBICA maintaining least Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and high Signal to Artifact Ratio (SAR), Mutual Information (MI), and Correlation Coefficient (CC). The proposed strategy vows to be a promising solution for artifact removal in the clinical use of EEG signals and in BCI applications.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"33 S1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AUTOMATIC ELECTROENCEPHALOGRAPHIC SOURCE SEPARATION STRATEGIES FOR SEIZURE PREDICTION APPLICATION\",\"authors\":\"Banu Priya Prathaban, Subash Rajendran, Ramachandran Balasubramanian\",\"doi\":\"10.4015/s1016237223500321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) is a common clinical method of recording the electrical activity of the brain. EEG can record High-Frequency Oscillations ([Formula: see text]80 HZ), which carry appropriate information regarding Epilepsy. High-Frequency Oscillations (HFO) serve as a potential biomarker for Epileptogenesis. EEG signals are often prone to artifact corruptions, which mislead the clinicians by the incorrect signal interpretations. Therefore, automatic artifact removal approach is a key phase in all the Brain-Computer Interface (BCI) applications. In this work, the automatic artifact identification and removal strategy without consuming any supplementary reference channel using two different approaches is developed and discussed. A proficient novel Modified Online Bi-Conjugate Gradient-based Independent Component Analysis (MOBICA) is developed. An efficient threshold-based peak detection and removal strategy, Sparsity-based Artifact Removal Technique (SART) is constructed, where Principle Component Analysis (PCA) is replaced with Singular Value Decomposition (SVD) of the K-SVD algorithm. Both the proposed models are evaluated on two different datasets like CHB-MIT and SRM scalp data recordings. Both the MOBICA and SART algorithms removed the artifactual component parting the intact EEG source component. Finally, the performance of the proposed agenda is compared with the conventional approaches. Our MOBICA and SART algorithms remove the artifactual component parting the intact EEG source component. Empirical results of SART on CHB-MIT and SRM databases of 52 EEG recordings outperform MOBICA maintaining least Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and high Signal to Artifact Ratio (SAR), Mutual Information (MI), and Correlation Coefficient (CC). The proposed strategy vows to be a promising solution for artifact removal in the clinical use of EEG signals and in BCI applications.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"33 S1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237223500321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)是临床常用的记录脑电活动的方法。脑电图可以记录高频振荡([公式:见文]80 HZ),其中包含有关癫痫的适当信息。高频振荡(HFO)是癫痫发生的潜在生物标志物。脑电图信号容易出现伪影失真,导致临床医生对信号的解读错误。因此,在脑机接口(BCI)的所有应用中,自动去除伪影方法是一个关键阶段。在这项工作中,开发和讨论了使用两种不同的方法在不消耗任何补充参考通道的情况下自动识别和删除工件的策略。提出了一种改进的基于在线双共轭梯度的独立分量分析方法。构建了一种基于阈值的高效峰值检测和去除策略——稀疏性伪像去除技术(SART),该技术将主成分分析(PCA)替换为K-SVD算法中的奇异值分解(SVD)。这两种模型都在两个不同的数据集(如CHB-MIT和SRM头皮数据记录)上进行了评估。MOBICA和SART算法都在分离完整的脑电信号源分量的基础上去除了人工成分。最后,将拟议议程的绩效与传统方法进行比较。我们的MOBICA和SART算法去除了分离完整EEG源分量的人工成分。在52个EEG记录的CHB-MIT和SRM数据库上,SART保持了最小的平均绝对误差(MAE)、均方根误差(RMSE)和高信伪比(SAR)、互信息(MI)和相关系数(CC),优于MOBICA。所提出的策略有望成为脑电图信号临床应用和脑机接口应用中去除伪影的一种有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AUTOMATIC ELECTROENCEPHALOGRAPHIC SOURCE SEPARATION STRATEGIES FOR SEIZURE PREDICTION APPLICATION
Electroencephalography (EEG) is a common clinical method of recording the electrical activity of the brain. EEG can record High-Frequency Oscillations ([Formula: see text]80 HZ), which carry appropriate information regarding Epilepsy. High-Frequency Oscillations (HFO) serve as a potential biomarker for Epileptogenesis. EEG signals are often prone to artifact corruptions, which mislead the clinicians by the incorrect signal interpretations. Therefore, automatic artifact removal approach is a key phase in all the Brain-Computer Interface (BCI) applications. In this work, the automatic artifact identification and removal strategy without consuming any supplementary reference channel using two different approaches is developed and discussed. A proficient novel Modified Online Bi-Conjugate Gradient-based Independent Component Analysis (MOBICA) is developed. An efficient threshold-based peak detection and removal strategy, Sparsity-based Artifact Removal Technique (SART) is constructed, where Principle Component Analysis (PCA) is replaced with Singular Value Decomposition (SVD) of the K-SVD algorithm. Both the proposed models are evaluated on two different datasets like CHB-MIT and SRM scalp data recordings. Both the MOBICA and SART algorithms removed the artifactual component parting the intact EEG source component. Finally, the performance of the proposed agenda is compared with the conventional approaches. Our MOBICA and SART algorithms remove the artifactual component parting the intact EEG source component. Empirical results of SART on CHB-MIT and SRM databases of 52 EEG recordings outperform MOBICA maintaining least Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and high Signal to Artifact Ratio (SAR), Mutual Information (MI), and Correlation Coefficient (CC). The proposed strategy vows to be a promising solution for artifact removal in the clinical use of EEG signals and in BCI applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering: Applications, Basis and Communications
Biomedical Engineering: Applications, Basis and Communications Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.50
自引率
11.10%
发文量
36
审稿时长
4 months
期刊介绍: Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies. Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.
期刊最新文献
CORRELATION OF POINCARE PLOT DERIVED STRESS SCORE AND HEART RATE VARIABILITY PARAMETERS IN THE ASSESSMENT OF CORONARY ARTERY DISEASE HEURISTIC-ASSISTED ADAPTIVE HYBRID DEEP LEARNING MODEL WITH FEATURE SELECTION FOR EPILEPSY DETECTION USING EEG SIGNALS MAGNETIC RESONANCE IMAGE DENOIZING USING A DUAL-CHANNEL DISCRIMINATIVE DENOIZING NETWORK PREDICTION OF EPILEPSY BASED ON EEMD AND LSSVM DOUBLE CLASSIFICATION FILTER SELECTION FOR REMOVING NOISE FROM CT SCAN IMAGES USING DIGITAL IMAGE PROCESSING ALGORITHM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1